亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    22.已知?jiǎng)狱c(diǎn)M在y軸右側(cè).M到點(diǎn)(0.)的距離比它到直線y=-的距離小. (1)求動(dòng)點(diǎn)M軌跡C的方程. (2)設(shè)M.N是軌跡C上相異兩點(diǎn).OM.ON的傾斜角分別為θ1.θ2.當(dāng)θ1.θ2變化且θ1+θ2為定值θ時(shí).證明直線MN恒過(guò)定點(diǎn).并求出該定點(diǎn)的坐標(biāo). 查看更多

     

    題目列表(包括答案和解析)

    已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為y軸,且準(zhǔn)線方程為y=-
    1
    2
    .
    直線l過(guò)M(1,0)與拋物線交于A,B兩點(diǎn),點(diǎn)P在y軸的右側(cè)且滿足
    OP
    =
    1
    2
    OA
    +
    1
    2
    OB
    (O為坐標(biāo)原點(diǎn)).
    (Ⅰ)求拋物線的方程及動(dòng)點(diǎn)P的軌跡方程;
    (Ⅱ)記動(dòng)點(diǎn)P的軌跡為C,若曲線C的切線斜率為λ,滿足
    MB
    MA
    ,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍.

    查看答案和解析>>

    已知一條曲線C在y軸右側(cè),C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
    (1)求曲線C的方程;
    (2)(文科做)已知點(diǎn)P是曲線C上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線x+2y+5=0上一個(gè)動(dòng)點(diǎn),求|PQ|的最小值.
    (理科做)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有
    FA
    FB
    <0
    ?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為y軸,且準(zhǔn)線方程為直線l過(guò)M(1,0)與拋物線交于A,B兩點(diǎn),點(diǎn)P在y軸的右側(cè)且滿足(O為坐標(biāo)原點(diǎn))。

    (Ⅰ)求拋物線的方程及動(dòng)點(diǎn)P的軌跡方程;

    (Ⅱ)記動(dòng)點(diǎn)P的軌跡為C,若曲線C的切線斜率為,滿足,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍。

    查看答案和解析>>

    已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為y軸,且準(zhǔn)線方程為直線l過(guò)M(1,0)與拋物線交于A,B兩點(diǎn),點(diǎn)P在y軸的右側(cè)且滿足(O為坐標(biāo)原點(diǎn))。

    (Ⅰ)求拋物線的方程及動(dòng)點(diǎn)P的軌跡方程;

    (Ⅱ)記動(dòng)點(diǎn)P的軌跡為C,若曲線C的切線斜率為,滿足,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍。

    查看答案和解析>>

    已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為y軸,且準(zhǔn)線方程為直線l過(guò)M(1,0)與拋物線交于A,B兩點(diǎn),點(diǎn)P在y軸的右側(cè)且滿足(O為坐標(biāo)原點(diǎn)).
    (Ⅰ)求拋物線的方程及動(dòng)點(diǎn)P的軌跡方程;
    (Ⅱ)記動(dòng)點(diǎn)P的軌跡為C,若曲線C的切線斜率為λ,滿足,點(diǎn)A到y(tǒng)軸的距離為a,求a的取值范圍.

    查看答案和解析>>

    一、選擇題:

    題號(hào)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    D

    A

    B

    C

    B

    C

    D

    D

    D

    C

    B

    B(文、理)

    二、填空題:

    13.-1        14.y2=4x(x>0,y>0)       15.      16.    16.(文)

    三、解答題:(理科)

    17.解:(1)由已知1-(2cos2A-1)=2cos2

         ∴2cos2A+cosA-1=0     cosA=或cosA=-1(舍去)

    ∴A=60°

    (2)S=bcsin60°=bc

    由余弦定理cos60°=

    ∴b2+c2=bc+36

    由b2+c2≥2bc    ∴bc≤36

    ∴S==9,此時(shí)b=c故△ABC為等邊三角形

      18.解:(1)設(shè)A(-,0),B(0,b)

          ∴  又=(2,2)

          ∴解得

    (2)由x+2>x2-x-6 得-2<x<4

      ,由于x+2>0

      ∴由均值不等式得原式最小值為-3,僅當(dāng)x=-1時(shí)

    19.解:(1)證明:連AC交BD于O,連EO

        ∵E、O分別是中點(diǎn),

    EO∥PA

    ∴ EO面EDB  PA∥面EDB

       PA面EDB

    (2) ∵△PDC為正△

    ∴DE⊥PC

     面PDC⊥面ABCD

     BC⊥CD       BC⊥DE

       BC面ABCD

    <fieldset id="miqmy"><pre id="miqmy"></pre></fieldset>
  • EDB⊥面PBC

      DE面DBE

    20.解:(1)x2-4ax+a2≥a在x∈[-1,+∞)恒成立

    ∴x2-4ax+a2-a≥0

    ∴△≤0或

    -≤a≤0或a≤

    (2)g(x)=2x3+3ax2-12a2x+3a2

       g′(x)=6x2+6ax-12a2

             =6(x-a)(x+2a)

    ①當(dāng)a=0時(shí),g′(x) ≥0,g(x)無(wú)極值

    ②當(dāng)a>0時(shí),g(x)在x=a時(shí)取得極小值,∴0<a<1

    ③當(dāng)a<0時(shí),g(x)在x=-2a時(shí)取到極小值,∴0<-2a<1  ∴-<a<0

    故0<a<1或-<a<0

          <td id="rjvax"><strong id="rjvax"></strong></td>
        •   ①-②得3tan-(2t+3)an-1=0

            ∴,又

            ∴{an}是以1為首項(xiàng),為公比的等比數(shù)列

            (2)f(t)=

            ∴bn=

            ∴{bn}是以1為首項(xiàng),為公差的等差數(shù)列

            ∴bn=1+

            (3)原式=b2(b1-b3)+b4(b3-b5)+…b2n(b2n-1+b2n+1)

                   =-(b2+b4+…b2n)

                   =-

          22.解(1)由題意M到(0,)距離與它到y(tǒng)=-距離相等

          ∴動(dòng)點(diǎn)M軌跡為拋物線,且P=

          ∴y=x2(x>0)

          (2)設(shè)M(x1,x12),N(x2,x22)(x1>0,x2>0,x1≠x2)

            ∴tanθ1=x1,tanθ2=x2(0<θ1, θ2<)

          ①當(dāng)θ≠時(shí),

          直線MN方程:y-x12=(x-x1),其中tanθ=

          :y=(x1+x2)(x+)-1,所以直線過(guò)定點(diǎn)(-

          ②當(dāng)θ=時(shí),即x1x2=1時(shí),:y=(x1+x2)x-1,過(guò)定點(diǎn)(0,-1)

          文科:17-19同理

          20.(文)(1)x2-4ax+a2≥x解為R

            ∵x2-(4a+1)x+a2≥0

            ∴△=(4a+1)2-4a2≤0

            ∴-

            ∴a的最大值為-

          (2)g(x)=2x3+3ax2-12a2x+3a2

             g′(x)=6x2+6ax-12a2

                   =6(x-a)(x+2a)

          當(dāng)a<0時(shí),g(x)在x=-2a時(shí)取到極小值,∴0<-2a<1  ∴-<a<0

          21.同理21(1)(2)

          22.同理

           

            • <fieldset id="miqmy"><acronym id="miqmy"></acronym></fieldset>