亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    20. 查看更多

     

    題目列表(包括答案和解析)

    (理)(本小題滿分12分)

        口袋里裝有大小相同的4個紅球和8個白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個球,規(guī)則如下:若一方摸出一個紅球,則此人繼續(xù)下一次摸球;若一方摸出一個白球,則由對方接替下一次摸球,且每次摸球彼此相互獨立,并由甲進行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學期望.

    查看答案和解析>>

    (理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當x>0時,

     

    且當時,恒成立,求的最小值.

     

    查看答案和解析>>

    (理)(本小題滿分12分)

    直四棱柱中,底面為菱形,且延長線上的一點,.

    (Ⅰ)求二面角的大;

    (Ⅱ)在上是否存在一點,使?若存在,求的值;不存在,說明理由.

     

    查看答案和解析>>

    (理)(本小題滿分12分)

    為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2 000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡).某旅游公司組織了一個有36名游客的旅游團到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.

    (1)在該團中隨機采訪2名游客,求恰有1人持銀卡的概率;

    (2)在該團中隨機采訪2名游客,求其中持金卡與持銀卡人數(shù)相等的概率

     

    查看答案和解析>>

    (理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當x>0時,
    且當時,恒成立,求的最小值.

    查看答案和解析>>

    第1卷

    一、選擇題

    1.D    2.B    3.B    4.C    5.A    6.C    7.B    8.A    9.D    10.C    11.A    12.A

    第Ⅱ卷

    二、填空題

    13.

    14.(理)(文)3x+3y-2=0

    15.(-3,0)(3,+∞)

    16.②④

    三、解答題

    17.(Ⅰ)這批食品不能出廠的概率是:

    (Ⅱ)五項指標全部檢驗完畢,這批食品可以出廠的概率是:

    五項指標全部檢驗完畢,這批食品不能出廠的概率是:

    由互斥事件有一個發(fā)生的概率加法公式可知,五項指標全部檢驗完畢,

    才能確定這批食品出廠與否的概率是:

    18.(Ⅰ)設f(x)=ax+b(a≠0),則c的方程為:

          ①

    由點(2,)在曲線c上,得1=(2一b).      ②

    由①②解得a=b=1,∴曲線c的方程為y=x-1.

    (Ⅱ)由,點(n+1,)底曲線c上,有=n

    于是?…?,

    注意到a1=1,所以an=(n-1)!

    (Ⅲ)

    19.(甲)(Ⅰ)選取DA1、DC、DD1,分別為Ox、Oy、Oy軸建立空間直角坐標,易知E(0,0,),F(xiàn)(,,0),B1(1,1,1),C(0,1,0),

    ,

    =0,

    (Ⅱ)G(0,,-1),Cl(0,1,1),

    (Ⅲ),

    (乙)

    (Ⅰ)用反證法易證B1D1與A1D不垂直.

    (Ⅱ)由余弦有cos∠AC1D1=

    設AC1=x,則

    單調(diào)遞增.

    (Ⅲ)∵A1B1∥C1D1,∴∠AC1D1為異面直線AC1與A1B1所成角.

    由余弦定理,有

    設AC1=x,則

    故AC1與A1B1所成角的取值范圍是

    20.(理)解:

    (Ⅰ)∵f(x)與g(x)的圖像關(guān)于直線x-1=0對稱,

    ∴f(x)=g(2-x).

    ,

    f(x)=g(2一x)=-ax+2x3

    又f(x)是偶函數(shù),∴

    f(x)=f(-x)=ax一2x3

    (Ⅱ)f(x)=a-6x2,∵f(x)為[0,1]上的增函數(shù).

    ∴f'(x)=a-6x2≥0,

    ∴a≥6x2上,恒成立.

    ∵x[0,1)時,6x2≤6,∴a≥6.

    即a的取值范圍是[6,+∞).

    (Ⅲ)當a在[0,1)上的情形.

    由f'(x)=0,得得a=6.此時x=1

    ∴當a(-6,6)時,f(x)的最大值不可能是4.

    (文)

    (1)

    (2)根據(jù)題意可得,

    整理得(ax-a)(ax+a-1)<0.

    由于a>1,所以x<1.

    21.解:

    (Ⅰ)∵|PF1|一|PF2|=2a,又|PF1|=3|PF2|.

    ∴|PF1|=3a,|PF2|=a.

    設F1(-c,0),F(xiàn)2(c,0),P(x0,y0),由得3a=ex0+a,則x0=

    ∵P在雙曲線右支上,∴x1≥a,即≥a,解得

    1<e≤2.

    ∴e的最大值為2,此時

    ∴漸近線方程為,

    (Ⅱ)

    ∴b2=C2-a2=6.

    ∴雙曲線方程為

    22.(理)解:

    (1)可求得f(x)=

    由f(x)<f(1)得

    整理得(ax-a)(ax+a―1)<0.

    由于a>l,所以x<1.

    (Ⅱ)

    ,

    ,

    即f(2)>2f(1).

    即f(3)>3f(1).

    (Ⅲ)更一般地,有:f(n)>nf(1)  (n *,n≥2).

    用數(shù)學歸納法證明,

    ①由(Ⅱ)知n=2,3時,不等式成立.

    ②假設n=k時,不等式成立,即f(k)>kf(1).

    這說明n=k+1時,不等式也成立.

    由①②可知,對于一切,均有f(x)>nf(1).

    (文)解:

    (Ⅰ)∵f(x)與g(x)的圖像關(guān)于直線x-1=0對稱.

    ∴f(x)=g(2-x),當x[-1,0]時,2一x[2,3]

    f(x)=g(2一x)=一ax+2x3

    又∵f(x)是偶函數(shù),∴x[0,1]時,一x[一1,0]

    f(x)=f(一x)=ax一2x3

    (Ⅱ)上的增函數(shù).

    上恒成立

    即a的取值范圍是[6,+∞].

    (Ⅲ)只考慮在[0,1)上的情形.

    ∴當的最大值不可能是4.


    同步練習冊答案