題目列表(包括答案和解析)
(本小題滿(mǎn)分16分)
已知正三角形OAB的三個(gè)頂點(diǎn)都在拋物線(xiàn)上,其中O為坐標(biāo)原點(diǎn),設(shè)圓C是
的外接圓(點(diǎn)C為圓心)(1)求圓C的方程;(2)設(shè)圓M的方程為
,過(guò)圓M上任意一點(diǎn)P分別作圓C的兩條切線(xiàn)PE、PF,切點(diǎn)為E、F,求
的最大值和最小值
(本小題滿(mǎn)分16分)已知函數(shù)在區(qū)間
上的最小值為
,令
,
,求證:
(本小題滿(mǎn)分16分)某連鎖分店銷(xiāo)售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為元(8≤x≤9)時(shí),一年的銷(xiāo)售量為(10-x)2萬(wàn)件.(1)求該連鎖分店一年的利潤(rùn)L(萬(wàn)元)與每件商品的售價(jià)x的函數(shù)關(guān)系式L(x);
(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤(rùn)L最大,并求出L的最大值M(a).
(本小題滿(mǎn)分16分)設(shè)數(shù)列的前n項(xiàng)和為
,數(shù)列
滿(mǎn)足:
,且數(shù)列
的前
n項(xiàng)和為.
(1) 求的值;
(2) 求證:數(shù)列是等比數(shù)列;
(3) 抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第3n-2項(xiàng),……余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列
,若
的前n項(xiàng)和為
,求證:
.
(本小題滿(mǎn)分16分)某連鎖分店銷(xiāo)售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為元(8≤x≤9)時(shí),一年的銷(xiāo)售量為(10-x)2萬(wàn)件.(1)求該連鎖分店一年的利潤(rùn)L(萬(wàn)元)與每件商品的售價(jià)x的函數(shù)關(guān)系式L(x);(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤(rùn)L最大,并求出L的最大值M(a).
一:填空題
1、2; 2、x∈R,使x2+1<x; 3、π; 4、;
5、既不充分也不必要條件;
6、1+i; 7、; 8、5; 9、; 10、(-∞, -)∪(,+∞);
11、2或5; 12、9; 13、b1?b22?b33?…?bnn=; 14、;
二:解答題
15.解:(1)∵(a=(cosα,sinα) (b=(cosβ,sinβ)
∴(a?(b=cos(α-β) =cos= …………………………………………5分
(2)∵∴
………7分
α+β=2α-(α-β)= -(α-β)
……………………………………9分
∴或
或7……………14分
16、證明:(1)令BC中點(diǎn)為N,BD中點(diǎn)為M,連結(jié)MN、EN
∵M(jìn)N是△ABC的中位線(xiàn)
∴ MN∥CD …………………………2分
由條件知AE∥CD ∴MN∥AE 又MN=CD=AE
∴四邊形AEMN為平行四邊形
∴AN∥EM …………………………4分
∵AN面BED, EM
面BED
∴AN∥面BED……………………6分
(2)
∵AE⊥面ABC, AN
面ABC
∴AE⊥AN 又∵AE∥CD,AN∥EM∴EM⊥CD………………8分
∵N為BC中點(diǎn),AB=AC∴AN⊥BC
∴EM⊥BC………………………………………………10分
∴EM⊥面BCD…………………………………………12分
∵EM面BED ∴ 面BED⊥面BCD ……14分
17.解:(1)取弦的中點(diǎn)為M,連結(jié)OM
由平面幾何知識(shí),OM=1
…………………………………………3分
解得:,
………………………………………5分
∵直線(xiàn)過(guò)F、B ,∴則
…………………………………………7分
(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM
則
……………………………………10分
解得
…………………………………………12分
∴
……………………………15分
18.(1)延長(zhǎng)BD、CE交于A,則AD=,AE=2
則S△ADE= S△BDE= S△BCE=, ∵S△APQ=
,
∴ ∴
…………………7分
(2)
=?
………………12分
當(dāng),即
……15分
19.解(1)證:
由
得
在C1上點(diǎn)處的切線(xiàn)為y-2e=2(x-e),即y=2x
又在C2上點(diǎn)處切線(xiàn)可計(jì)算得y-2e=2(x-e),即y=2x
∴直線(xiàn)l與C1、C2都相切,且切于同一點(diǎn)(e,2e) …………………5分
(2)據(jù)題意:M(t, +e),N(t,2elnt),P(t,2t)
∵+e-2t=≥0,∴+e ≥2t
設(shè)h(t)= 2t-2elnt,則由h/(t)=2-=0得t=e ;
當(dāng)t∈(0,e)時(shí)h/(t)<0,h(t)單調(diào)遞減;且當(dāng)t∈(e,+∞)時(shí)h/(t)>0,h(t)單調(diào)遞增;
∴t>0有h(t)≥h(e)=0 ∴2t≥2elnt
∴f(t)=+e-2t-(2t-2elnt)= +e -4t+2elnt………………4分
f(t)= +2e-4==≥0…………………7分
∴在
上遞增∴當(dāng)
時(shí)
………10分
(3)
設(shè)上式為 ,假設(shè)
取正實(shí)數(shù),則
?
當(dāng)時(shí),
,
遞減;
當(dāng),
,
遞增. ……………………………………12分
∵
∴不存在正整數(shù),使得
即
…………………16分
20.解:(1),
,
對(duì)一切
恒成立
的最小值,又
,
………………4分
(2)這5個(gè)數(shù)中成等比且公比
的三數(shù)只能為
只能是
,
…………………………8分
,
,
,
顯然成立
……………………………………12分
當(dāng)時(shí),
,
∴ ∴使
成立的自然數(shù)n恰有4個(gè)正整數(shù)的p值為3……16分
三:理科附加題
21. A.解:(1)
∴ ∴AB=CD
…………………………4分
(2)由相交弦定理得2×1=(3+OP)(3-OP)
∴,∴
……………………………………10分
B.解:依題設(shè)有:
………………………………………4分
令,則
…………………………………………5分
…………………………………………7分
………………………………10分
C.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.(1)
,
,由
得
.
所以.
即為圓
的直角坐標(biāo)方程. ……………………………………3分
同理為圓
的直角坐標(biāo)方程. ……………………………………6分
(2)由
相減得過(guò)交點(diǎn)的直線(xiàn)的直角坐標(biāo)方程為. …………………………10分
D.證明:(1)因?yàn)?sub>
所以
…………………………………………4分
(2)∵ …………………………………………6分
同理,,
……………………………………8分
三式相加即得……………………………10分
22.解:(1)記“恰好選到1個(gè)曾參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的,
則其概率為
…………………………………………4分
答:恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為
(2)隨機(jī)變量
P(ξ=2)= =; P(ξ=3)= =;………7分
2
3
4
P
∴隨機(jī)變量的分布列為
………………10分
23.(1),
,
,
,
,
………………3分
(2)平面BDD1的一個(gè)法向量為,設(shè)平面BFC1的法向量為
∴
取得平面BFC1的一個(gè)法向量
∴所求的余弦值為
……………………………………6分
(3)設(shè)(
)
,由
得
即,
,
當(dāng)
時(shí),
當(dāng)
時(shí),∴
……………10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com