題目列表(包括答案和解析)
設函數(shù).
(I)求的單調區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調遞增區(qū)間為,
單調遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當,即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當,即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當時,
;
當時,
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調性、函數(shù)的零點,函數(shù)的最值等基礎知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
已知函數(shù)f(x)=,
為常數(shù)。
(I)當=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),求的取值范圍。
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是
然后求導,
,得到由
,得0<x<1;由
,得x>1;得到單調區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),則
或
在區(qū)間[1,2]上恒成立,即即
,或
在區(qū)間[1,2]上恒成立,解得a的范圍。
(1)當a=1時,f(x)=,則f(x)的定義域是
。
由,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分
(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),
則或
在區(qū)間[1,2]上恒成立。∴
,或
在區(qū)間[1,2]上恒成立。即
,或
在區(qū)間[1,2]上恒成立。
又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=
,h(x)min=h(1)=3
即,或
。 ∴
,或
。
已知函數(shù),數(shù)列
的項滿足:
,(1)試求
(2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.
【解析】第一問中,利用遞推關系,
,
第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(數(shù)學歸納法證明)i) ,
,命題成立
ii) 假設時,
成立
則時,
綜合i),ii) : 成立
在中,內(nèi)角A,B,C所對的分別是a,b,c。已知a=2,c=
,cosA=
.
(I)求sinC和b的值;
(II)求的值。
【考點定位】本小題主要考查同角三角函數(shù)的基本關系、二倍角的正弦與余弦公式、兩角和余弦公式以及正弦定理、余弦定理等基礎知識,考查基本運算求解能力.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com