亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    因此.當時.取得最大值 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當時,,則。

    依題意得:,即    解得

    第二問當時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

    第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    (Ⅰ)當時,,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當時,,令

    變化時,的變化情況如下表:

    0

    0

    +

    0

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    ,!上的最大值為2.

    ②當時, .當時, ,最大值為0;

    時, 上單調(diào)遞增。∴最大值為。

    綜上,當時,即時,在區(qū)間上的最大值為2;

    時,即時,在區(qū)間上的最大值為。

    (Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時,

    代入(*)式得:    即   (**)

     ,則

    上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>

    已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

    (1)求數(shù)列的通項公式和數(shù)列的前n項和;

    (2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

    (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

    【解析】第一問利用在中,令n=1,n=2,

       即      

    解得,, [

    時,滿足,

    ,

    第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

     ,等號在n=2時取得.

    此時 需滿足.  

    ②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

     是隨n的增大而增大, n=1時取得最小值-6.

    此時 需滿足

    第三問,

         若成等比數(shù)列,則,

    即.

    ,可得,即,

            .

    (1)(法一)在中,令n=1,n=2,

       即      

    解得,, [

    時,滿足

    (2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

     ,等號在n=2時取得.

    此時 需滿足.  

    ②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

     是隨n的增大而增大, n=1時取得最小值-6.

    此時 需滿足

    綜合①、②可得的取值范圍是

    (3)

         若成等比數(shù)列,則

    即.

    ,可得,即,

    ,且m>1,所以m=2,此時n=12.

    因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

     

    查看答案和解析>>

    已知正三角形ABC的頂點A(1,1),B(1,3),頂點C在第一象限,若點(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是

    (A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

    【解析】    做出三角形的區(qū)域如圖,由圖象可知當直線經(jīng)過點B時,截距最大,此時,當直線經(jīng)過點C時,直線截距最小.因為軸,所以,三角形的邊長為2,設(shè),則,解得,,因為頂點C在第一象限,所以,即代入直線,所以的取值范圍是,選A.

     

    查看答案和解析>>

    設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

    對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

    記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

    (1)   對如下數(shù)表A,求K(A)的值;

    1

    1

    -0.8

    0.1

    -0.3

    -1

     

    (2)設(shè)數(shù)表A∈S(2,3)形如

    1

    1

    c

    a

    b

    -1

     

    求K(A)的最大值;

    (3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

    【解析】(1)因為

    所以

    (2)  不妨設(shè).由題意得.又因為,所以,

    于是,,

        

    所以,當,且時,取得最大值1。

    (3)對于給定的正整數(shù)t,任給數(shù)表如下,

    任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

    ,并且,因此,不妨設(shè),

    得定義知,,

    又因為

    所以

         

         

    所以,

    對數(shù)表

    1

    1

    1

    -1

    -1

     

    ,

    綜上,對于所有的,的最大值為

     

    查看答案和解析>>

    已知函數(shù),其中.

      (1)若處取得極值,求曲線在點處的切線方程;

      (2)討論函數(shù)的單調(diào)性;

      (3)若函數(shù)上的最小值為2,求的取值范圍.

    【解析】第一問,處取得極值

    所以,,解得,此時,可得求曲線在點

    處的切線方程為:

    第二問中,易得的分母大于零,

    ①當時, ,函數(shù)上單調(diào)遞增;

    ②當時,由可得,由解得

    第三問,當時由(2)可知,上處取得最小值,

    時由(2)可知處取得最小值,不符合題意.

    綜上,函數(shù)上的最小值為2時,求的取值范圍是

     

    查看答案和解析>>


    同步練習(xí)冊答案