題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為
,求數(shù)列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:
,設
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若當時,不等式
恒成立,求實數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時,
的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(III)設數(shù)列的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
第Ⅰ部分(正卷)
一、填空題:本大題共14小題,每小題5分,計70分。
1、
2、
3、對任意
使
4、2 5、
6、
7、
8、8
9、
10、40
11、
12、4
13、
14、
二、解答題:本大題共6小題,計90分。解答應寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。
15、解:(1)解:
,
由
,有
,
解得
。
……7分
(2)解法一:
……11分
。 ……14分
解法二:由(1),
,得
∴
∴
……10分
于是
,
……12分
代入得
。
……14分
16、證明:(1)∵
∴
……4分
(2)令
中點為
,
中點為
,連結
、
∵
是
的中位線
∴
……6分
又∵
∴
∴
……8分
∴
∵
為正
∴
……10分
∴
又∵
,
∴四邊形
為平行四邊形 ……12分
∴
∴
……14分
17、解:(1)設
米,
,則
∵
∴
∴
……2分
∴
∴
……4分
∴
∴
或
……5分
(2)
……7分
此時
……10分
(3)∵
令
,
……11分
∵
當
時,
∴
在
上遞增
……13分
∴
此時
……14分
答:(1)
或
(2)當
的長度是
的面積最小,最小面積為24平方米;
(3)當
的長度是
的面積最小,
最小面積為27平方米。 ……15分
18、(1)解:①若直線
的斜率不存在,即直線是
,符合題意。 ……2分
②若直線
斜率存在,設直線
為
,即
。
由題意知,圓心
以已知直線
的距離等于半徑2,即:
,
解之得
……5分
所求直線方程是
,
……6分
(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設直線方程為
由
得
……8分
又直線
與
垂直,由
得
……11分
∴
……13分
為定值。
故是定值,且為6。
……15分
19、解:(1)由題意得,
……2分
∴
,
∴
……3分
∴,∴
在
是
單調增函數(shù), ……5分
∴對于
恒成立。 ……6分
(2)方程; ∴
……7分
∵,∴方程為
……9分
令,
,
∵,當
時,
,∴
在
上為增函數(shù);
時,
, ∴
在
上為減函數(shù), ……12分
當
時,
……13分
,
∴函數(shù)、
在同一坐標系的大致圖象如圖所示,
∴①當,即
時,方程無解。
②當,即
時,方程有一個根。
③當,即
時,方程有兩個根。 ……16分
第Ⅱ部分(附加卷)
一、必做題
21、解:(1)由
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com