題目列表(包括答案和解析)
已知動圓與圓
相切,且與圓
相內(nèi)切,記圓心
的軌跡為曲線
;設(shè)
為曲線
上的一個不在
軸上的動點(diǎn),
為坐標(biāo)原點(diǎn),過點(diǎn)
作
的平行線交曲線
于
兩個不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為
,求
的最大值.
已知動圓與圓
相切,且與圓
相內(nèi)切,記圓心
的軌跡為曲線
;設(shè)
為曲線
上的一個不在
軸上的動點(diǎn),
為坐標(biāo)原點(diǎn),過點(diǎn)
作
的平行線交曲線
于
兩個不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為
,
的面積為
,令
,求
的最大值.
已知圓直線
與圓
相切,且交橢圓
于
兩點(diǎn),
是橢圓的半焦距,
,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動點(diǎn)
,直線AS,BS與直線
分別交于M,N兩點(diǎn),求線段MN的長度的最小值.
一動圓與圓外切,與圓
內(nèi)切.
(1)求動圓圓心的軌跡
的方程;
(2)設(shè)過圓心的直線
與軌跡
相交于
、
兩點(diǎn),請問
(
為圓
的圓心)的內(nèi)切圓
的面積是否存在最大值?若存在,求出這個最大值及直線
的方程,若不存在,請說明理由.
第Ⅰ部分(正卷)
一、填空題:本大題共14小題,每小題5分,計70分。
1、
2、
3、對任意
使
4、2 5、
6、
7、
8、8
9、
10、40
11、
12、4
13、
14、
二、解答題:本大題共6小題,計90分。解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。
15、解:(1)解:
,
由
,有
,
解得
。
……7分
(2)解法一:
……11分
。 ……14分
解法二:由(1),
,得
∴
∴
……10分
于是
,
……12分
代入得
。
……14分
16、證明:(1)∵
∴
……4分
(2)令
中點(diǎn)為
,
中點(diǎn)為
,連結(jié)
、
∵
是
的中位線
∴
……6分
又∵
∴
∴
……8分
∴
∵
為正
∴
……10分
∴
又∵
,
∴四邊形
為平行四邊形 ……12分
∴
∴
……14分
17、解:(1)設(shè)
米,
,則
∵
∴
∴
……2分
∴
∴
……4分
∴
∴
或
……5分
(2)
……7分
此時
……10分
(3)∵
令
,
……11分
∵
當(dāng)
時,
∴
在
上遞增
……13分
∴
此時
……14分
答:(1)
或
(2)當(dāng)
的長度是
的面積最小,最小面積為24平方米;
(3)當(dāng)
的長度是
的面積最小,
最小面積為27平方米。 ……15分
18、(1)解:①若直線
的斜率不存在,即直線是
,符合題意。 ……2分
②若直線
斜率存在,設(shè)直線
為
,即
。
由題意知,圓心
以已知直線
的距離等于半徑2,即:
,
解之得
……5分
所求直線方程是
,
……6分
(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為
由
得
……8分
又直線
與
垂直,由
得
……11分
∴
……13分
為定值。
故是定值,且為6。
……15分
19、解:(1)由題意得,
……2分
∴
,
∴
……3分
∴,∴
在
是
單調(diào)增函數(shù), ……5分
∴對于
恒成立。 ……6分
(2)方程; ∴
……7分
∵,∴方程為
……9分
令,
,
∵,當(dāng)
時,
,∴
在
上為增函數(shù);
時,
, ∴
在
上為減函數(shù), ……12分
當(dāng)
時,
……13分
,
∴函數(shù)、
在同一坐標(biāo)系的大致圖象如圖所示,
∴①當(dāng),即
時,方程無解。
②當(dāng),即
時,方程有一個根。
③當(dāng),即
時,方程有兩個根。 ……16分
第Ⅱ部分(附加卷)
一、必做題
21、解:(1)由
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com