亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    1. 知四邊形ABCD上任意一點P在映射:→作用下的象P`構(gòu)成的圖形為四邊形.若四邊形ABCD的面積等于6.則四邊形的面積等于 查看更多

     

    題目列表(包括答案和解析)

    某城市計劃在如圖所示的空地ABCD上豎一塊長方形液晶廣告屏幕MNEF,宣傳該城市未來十年計劃、目標等相關(guān)政策.已知四邊形ABCD是邊長為30m的正方形,電源在點P處,點P到邊AD、AB的距離分別為9m,3m,且MN~NE=16~9,線段MN必過點P,端點M、N分別在邊AD、AB上,設(shè)AN=xm,液晶廣告屏幕MNEF的面積為Sm2
    (1)求S關(guān)于x的函數(shù)關(guān)系式及其定義域;
    (2)若液晶屏每平米造價為1500元,當(dāng)x為何值時,液晶廣告屏幕MNEF的造價最低?

    查看答案和解析>>

    如圖,已知四邊形ABCD內(nèi)接于圓,延長AD,BC相交于點E,點F是BD的延長線上的點,且DE平分∠CDF,若AC=3cm,AD=2cm,則DE長為
    2.5
    2.5
    cm.

    查看答案和解析>>

    已知四邊形ABCD中,∠B=∠D=90°,AD=CD=
    6
    ,∠BAC=60°,E為AC的中點;現(xiàn)將△ACD沿對角線AC折起,使點D在平面ABC上的射影H落在BC上.
    (1)求證:AB⊥平面BCD;
    (2)求三棱錐D-ABE的體積.

    查看答案和解析>>

    精英家教網(wǎng)已知四邊形ABCD是邊長為1的正方形,且A1A⊥平面ABCD,P為A1A上一動點,過BD且垂直于PC的平面交PC于E,那么異面直線PC與BD所成的角的度數(shù)為
     
    ,當(dāng)三棱錐E-BCD的體積取得最大值時,四棱錐P-ABCD的高PA的長為
     

    查看答案和解析>>

    (2013•朝陽區(qū)二模)如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點.
    (Ⅰ)求證:FG∥平面PDE;
    (Ⅱ)求證:平面FGH⊥平面AEB;
    (Ⅲ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.

    查看答案和解析>>

    一、選擇題

    1.選D。提示:在映射f作用下,四邊形ABCD整體平移,面積不變

    2,4,6

    3.選B。提示:3的對面的數(shù)字是6,4 的對面的數(shù)字是2,故。

    4.選B。提示:設(shè)A∪B元素個數(shù)為y,可知10≤y≤16, y∈N,又由x = 18-y可得。

    5.選A。提示: 可知一條對稱軸。

    6.選A。提示:依題意:課外興趣味小組由4名女生2名男生組成,共有種選法.其概率為

    7.選C。提示:設(shè)代入,記,

    ,,,。

    8.選A。提示:  

    9.選B。提示:原方程兩邊立方并整理得,,顯然,,由于 上是增函數(shù),且,,所以。

    10.選C。提示:①正確;②正確,即為公垂線AB的中垂面;③正確,過AB中點 的平行線,則的平分線符合條件;④不正確,關(guān)于對稱的兩條異面線段的中點與共線。

    二、填空題

    11.。提示:最小系數(shù)為。

    12.。提示:,

    13.11.提示:,,取。

    14.。提示:由已知,,即,由線性規(guī)劃知識知,當(dāng),達到最大值。

    15.。提示:令,則,因為,所以

        <ol id="dtnej"><fieldset id="dtnej"></fieldset></ol>

              <td id="rjvax"><strong id="rjvax"></strong></td>
            • 0

              1

              2

               

               

               

               

               

               

                     。

              17.。提示:令,得;令,得;令,得;令,得;故。

              三、解答題

              18.解:(I)

              ――――7分

              (II)因為為銳角,且,所以。――――9分

              ――14分

              19.解:(I)因為平面,

              所以平面平面,

              ,所以平面,

              ,又

              所以平面;――――4分

              (II)因為,所以四邊形為 

              菱形,

              ,又中點,知。

              中點,則平面,從而面,

                     過,則,

                     在中,,故,

                     即到平面的距離為。――――9分

                     (III)過,連,則,

                     從而為二面角的平面角,

                     在中,,所以

              中,,

                     故二面角的大小為。14分

               

                     解法2:(I)如圖,取的中點,則,因為,

                     所以,又平面,

                     以軸建立空間坐標系,

                     則,,,

              ,

              ,,

              ,由,知,

                     又,從而平面;――――4分

                     (II)由,得。

                     設(shè)平面的法向量為,,,所以

              ,設(shè),則

                     所以點到平面的距離。――9分

                     (III)再設(shè)平面的法向量為,,,

                     所以

              ,設(shè),則,

                     故,根據(jù)法向量的方向,

                     可知二面角的大小為。――――14分

              20.解:(I)設(shè),則,因為 ,可得;又由,

                     可得點的軌跡的方程為。――――6分(沒有扣1分)

                     (II)假設(shè)存在直線,代入并整理得

              ,――――8分

                     設(shè),則   ――――10分

                     又

                    

              ,解得――――13分

                     特別地,若,代入得,,此方程無解,即。

                     綜上,的斜率的取值范圍是。――――14分

              21.解:(I)

                     (1)當(dāng)時,函數(shù)增函數(shù),

                     此時,,

              ,所以;――2分

                     (2)當(dāng)時,函數(shù)減函數(shù),此時,,

              ,所以;――――4分

                     (3)當(dāng)時,若,則,有;

                     若,則,有;

                     因此,,――――6分

                     而,

                     故當(dāng)時,,有;

                     當(dāng)時,,有;――――8分

              綜上所述:。――――10分

                     (II)畫出的圖象,如右圖。――――12分

                     數(shù)形結(jié)合,可得。――――14分

              22.解: (Ⅰ)先用數(shù)學(xué)歸納法證明,.

                     (1)當(dāng)n=1時,由已知得結(jié)論成立;

                     (2)假設(shè)當(dāng)n=k時,結(jié)論成立,即.則當(dāng)n=k+1時,

                     因為0<x<1時,,所以f(x)在(0,1)上是增函數(shù).

                     又f(x)在上連續(xù),所以f(0)<f()<f(1),即0<.

                     故當(dāng)n=k+1時,結(jié)論也成立. 即對于一切正整數(shù)都成立.――――4分

                     又由, 得,從而.

                     綜上可知――――6分

                     (Ⅱ)構(gòu)造函數(shù)g(x)=-f(x)= , 0<x<1,

                     由,知g(x)在(0,1)上增函數(shù).

                     又g(x)在上連續(xù),所以g(x)>g(0)=0.

                  因為,所以,即>0,從而――――10分

                     (Ⅲ) 因為 ,所以, ,

                     所以   ――――① , ――――12分

                     由(Ⅱ)知:,  所以= ,

                     因為, n≥2,

                  所以 <<=――――② .  ――――14分

                     由①② 兩式可知: .――――16分