亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    故線段是圓的直徑[點(diǎn)評(píng)]本小題考查了平面向量的基本運(yùn)算. 查看更多

     

    題目列表(包括答案和解析)

    已知f(n)=(2n+7)3n+9,存在自然數(shù)m,使得對(duì)任意正整數(shù)n,都能使m整除f(n),猜測(cè)出最大的m的值。并用數(shù)學(xué)歸納法證明你的猜測(cè)是正確的。

    【解析】本試題主要考查了歸納猜想的運(yùn)用,以及數(shù)學(xué)歸納法的證明。

    ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36

    ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除

    然后證明n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),

    f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),

    f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k

    =(4k+20)·3k=36(k+5)·3k-2?(k≥2)  證明得到。解析  ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36

    ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除 

    證明  n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),

    f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),

    f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k

    =(4k+20)·3k=36(k+5)·3k-2?(k≥2)  f(k+1)能被36整除

    ∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36

     

    查看答案和解析>>

    如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

    (Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

     

    【解析】本試題主要考查了立體幾何中的運(yùn)用。

    (1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

    (Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

    AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

    故△ADE為等腰三角形.

    取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

    連接FG,則FG∥EC,F(xiàn)G⊥DE.

    所以,∠AFG是二面角A-DE-C的平面角.

    連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

    cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

    所以,二面角A-DE-C的大小為120°

     

    查看答案和解析>>

    平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線可以是圓、橢圓或雙曲線。求曲線的方程,并討論的形狀與值的關(guān)系。

    【解析】本試題主要考查了平面中動(dòng)點(diǎn)的軌跡方程,利用斜率之積為定值可以對(duì)參數(shù)進(jìn)行分類討論,并得到關(guān)于不同曲線的參數(shù)的范圍問題。對(duì)于方程的特點(diǎn)做了很好的考查和運(yùn)用。

     

    查看答案和解析>>

    已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

    (Ⅰ)求橢圓E的方程;

    (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

    【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

    ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

    解:(Ⅰ)設(shè)橢圓E的方程為

    ①………………………………1分

      ②………………2分

      ③       由①、②、③得a2=12,b2=6…………3分

    所以橢圓E的方程為…………………………4分

    (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

     代入橢圓E方程,得…………………………6分

    ………………………7分

    、………………8分

    ………………………9分

    ……………………………10分

        當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

    圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

    同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

    圓P的方程為(x+2)2+(y+1)2=4

     

    查看答案和解析>>

    平面內(nèi)與兩定點(diǎn)、連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線可以是圓、橢圓或雙曲線。求曲線的方程,并討論的形狀與值的關(guān)系。

    【解析】本試題主要考查了平面中動(dòng)點(diǎn)的軌跡方程,利用斜率之積為定值可以對(duì)參數(shù)進(jìn)行分類討論,并得到關(guān)于不同曲線的參數(shù)的范圍問題。對(duì)于方程的特點(diǎn)做了很好的考查和運(yùn)用。

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案