亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    令.解得或 ????????????????????????????????????????????????????????????????????????????????????????????????????? 5分 查看更多

     

    題目列表(包括答案和解析)

    已知,函數(shù)

    (1)當(dāng)時,求函數(shù)在點(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

    對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時,  又    

    ∴  函數(shù)在點(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

    綜上所述   時,極大值為,無極小值

    時  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè),

    求導(dǎo),得

    ,    

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實數(shù)的取值范圍是(,

     

    查看答案和解析>>

    已知函數(shù)y=x²-3x+c的圖像與x恰有兩個公共點,則c=

    (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

    【解析】若函數(shù)的圖象與軸恰有兩個公共點,則說明函數(shù)的兩個極值中有一個為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

     

    查看答案和解析>>

    已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

    (1)求數(shù)列的通項公式;

    (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

    【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,

    由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

    解:(1)設(shè)數(shù)列公差為,由題意可知,即,

    解得(舍去).      …………3分

    所以,.        …………6分

    (2)不等式等價于,

    當(dāng)時,;當(dāng)時,;

    ,所以猜想,的最小值為.     …………8分

    下證不等式對任意恒成立.

    方法一:數(shù)學(xué)歸納法.

    當(dāng)時,,成立.

    假設(shè)當(dāng)時,不等式成立,

    當(dāng)時,, …………10分

    只要證  ,只要證  ,

    只要證  ,只要證  ,

    只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

    方法二:單調(diào)性證明.

    要證 

    只要證  ,  

    設(shè)數(shù)列的通項公式,        …………10分

    ,    …………12分

    所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

    ,所以恒成立,

    的最小值為

     

    查看答案和解析>>

    已知函數(shù)

    (1)求在區(qū)間上的最大值;

    (2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實數(shù)m的取值范圍.

    【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用,求解函數(shù)的最值。第一問中,利用導(dǎo)數(shù)求解函數(shù)的最值,首先求解導(dǎo)數(shù),然后利用極值和端點值比較大小,得到結(jié)論。第二問中,我們利用函數(shù)在上存在遞減區(qū)間,即上有解,即,即可,可得到。

    解:(1), 

    ,解得                 ……………3分

    上為增函數(shù),在上為減函數(shù),

                

     

     

     

     

     

    .          …………6分

    (2)

    上存在遞減區(qū)間,上有解,……9分

    上有解,

    所以,實數(shù)的取值范圍為  

     

    查看答案和解析>>

    已知集合A={1.3. },B={1,m} ,AB=A, 則m=

    A、0或    B、0或3      C、1或       D、1或3

    【解析】因為,所以,所以.若,則,滿足.若,解得.若,則,滿足.若顯然不成立,綜上,選B.

     

    查看答案和解析>>


    同步練習(xí)冊答案