題目列表(包括答案和解析)
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時,數(shù)列中的
成等比數(shù)列
(本題滿分12分)已知
(1)若函數(shù)的定義域為
;當(dāng)
時,求
的最大值和最小值。
(2)要使對
恒成立,求
的取值范圍。
若正數(shù)x,y滿足,那么使不等式
恒成立的實數(shù)m的取值范圍
是_ .
已知函數(shù),在定義域內(nèi)有且只有一個零點,存在
, 使得不等式
成立. 若
,
是數(shù)列
的前
項和.
(I)求數(shù)列的通項公式;
(II)設(shè)各項均不為零的數(shù)列中,所有滿足
的正整數(shù)
的個數(shù)稱為這個數(shù)列
的變號數(shù),令
(n為正整數(shù)),求數(shù)列
的變號數(shù);
(Ⅲ)設(shè)(
且
),使不等式
恒成立,求正整數(shù)
的最大值
對于函數(shù),在使
≥M恒成立的所有常數(shù)M中,我們把M中的最大值稱為函數(shù)
的“下確界”,則函數(shù)
的下確界為_______________.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com