亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅰ)求證:; 查看更多

     

    題目列表(包括答案和解析)

    (Ⅰ)求證:
    sinx
    1-cosx
    =
    1+cosx
    sinx
    ;
    (Ⅱ)化簡:
    tan(3π-α)
    sin(π-α)sin(
    3
    2
    π-α)
    +
    sin(2π-α)cos(α-
    2
    )
    sin(
    2
    +α)cos(2π+α)

    查看答案和解析>>

    (Ⅰ)求證:
    C
    m
    n
    =
    n
    m
    C
    m-1
    n-1

    (Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
    (Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
    (1+x)[1-(1+x)n]
    1-(1+x)
    =
    (1+x)n+1-(1+x)
    x
    ;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

    查看答案和解析>>

    (Ⅰ)求證:
    sinx
    1-cosx
    =
    1+cosx
    sinx
    ;
    (Ⅱ)化簡:
    tan(3π-α)
    sin(π-α)sin(
    3
    2
    π-α)
    +
    sin(2π-α)cos(α-
    2
    )
    sin(
    2
    +α)cos(2π+α)

    查看答案和解析>>

    (Ⅰ)求證:;
    (Ⅱ)化簡:

    查看答案和解析>>

    (Ⅰ)求證:
    (Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
    (Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

    查看答案和解析>>

    1-10.CDBBA   CACBD

    11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

    18.

    解:(1)由已知            7分

    (2)由                                                                   10分

    由余弦定理得                          14分

     

    19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

    ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

    (2)解:過C作CE⊥AB于E,連接PE,

    ∵PA⊥底面ABCD,∴CE⊥面PAB,

    ∴直線PC與平面PAB所成的角為,                                                    10分

    ∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

    中求得CE=,∴.                                                  14分

     

    20.解:(1)由①,得②,

    ②-①得:.                              4分

    (2)由求得.          7分

    ,   11分

    .                                                                 14分

     

    21.解:

    (1)由得c=1                                                                                     1分

    ,                                                         4分

          <td id="rjvax"><strong id="rjvax"></strong></td>

          • 市一次模文數(shù)參答―1(共2頁)

                                                                                                    5分

            (2),時取得極值.由,.                                                                                          8分

            ,,∴當(dāng)時,,

            上遞減.                                                                                       12分

            ∴函數(shù)的零點有且僅有1個     15分

             

            22.解:(1) 設(shè),由已知

            ,                                        2分

            設(shè)直線PB與圓M切于點A,

            ,

                                                             6分

            (2) 點 B(0,t),點,                                                                  7分

            進一步可得兩條切線方程為:

            ,                                   9分

            ,,

            ,,                                          13分

            ,又時,,

            面積的最小值為                                                                            15分

             

             

            <span id="wer42"><dfn id="wer42"><tr id="wer42"></tr></dfn></span>

            <label id="wer42"><legend id="wer42"><tr id="wer42"></tr></legend></label>