亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    22.已知拋物線:的準(zhǔn)線與軸交于點(diǎn).為拋物線的焦點(diǎn).過(guò)點(diǎn)斜率為的直線與拋物線交于.兩點(diǎn). 查看更多

     

    題目列表(包括答案和解析)

    已知拋物線,焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn);橢圓:分別以為左、右焦點(diǎn),其離心率;且拋物線和橢圓的一個(gè)交點(diǎn)記為

    (1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;

    (2)在(1)的條件下,若直線經(jīng)過(guò)橢圓的右焦點(diǎn),且與拋物線相交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程.

     

    查看答案和解析>>

    已知拋物線,焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn);橢圓:分別以為左、右焦點(diǎn),其離心率;且拋物線和橢圓的一個(gè)交點(diǎn)記為
    (1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
    (2)在(1)的條件下,若直線經(jīng)過(guò)橢圓的右焦點(diǎn),且與拋物線相交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程

    查看答案和解析>>

    已知拋物線y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)M,
    (1)若M點(diǎn)的坐標(biāo)為(-1,0),求拋物線的方程;
    (2)過(guò)點(diǎn)M的直線l與拋物線交于兩點(diǎn)P、Q,若
    FP
    FQ
    =0
    (其中F是拋物線的焦點(diǎn)),求證:直線l的斜率為定值.

    查看答案和解析>>

    已知拋物線C1:y2=4mx(m>0)的焦點(diǎn)為F2,其準(zhǔn)線與x軸交于點(diǎn)F1,以F1,F(xiàn)2為焦點(diǎn),離心率為
    12
    的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
    (1)當(dāng)m=1時(shí),求橢圓的標(biāo)準(zhǔn)方程及其右準(zhǔn)線的方程;
    (2)用m表示P點(diǎn)的坐標(biāo);
    (3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    已知拋物線C:y2=mx(m≠0)的準(zhǔn)線與直線l:kx-y+2k=0(k≠0)的交點(diǎn)M在x軸上,l與C交于不同的兩點(diǎn)A、B,線段AB的垂直平分線交x軸于點(diǎn)N(p,0).
    (1)求拋物線C的方程;
    (2)求實(shí)數(shù)p的取值范圍;
    (3)若C的焦點(diǎn)和準(zhǔn)線為橢圓Q的一個(gè)焦點(diǎn)和一條準(zhǔn)線,試求Q的短軸的端點(diǎn)的軌跡方程.

    查看答案和解析>>

    一.選擇題 (本大題共10小題,每題5分,共50分)

    1.C;    2.D;    3,A;    4.B;     5.B;

    6.A;    7.B;    8.D;    9.B;     10.D;

    二.填空題 (本大題共7小題,每題4分,共28分)

    11.;  12.,; ;   14.,;  15.;  16.;  17.

    三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

    18.解:(1)因?yàn)?sub>,所以,…………3分

        得,

        所以…………………………………3分

    (2)由,…………………………………2分

        ……………………2分

        ………………………………4分

    19.解:(1)…………………2分

          當(dāng)時(shí),…………………2分

         ∴,即

        ∴是公比為3的等比數(shù)列…………………2分

    (2)由(1)得:…………………2分

    設(shè)的公差為), ∵,∴………………2分

    依題意有,

    ,得,或(舍去)………………2分

    ………………2分

     

    20.解(1),

    由三視圖知:側(cè)棱,

    ………………2分

    ,又,∴   ①………………2分

    為正方形,∴,又

     ②………………2分

    由①②知平面………………2分

    (2)取的中點(diǎn),連結(jié),由題意知,∴

    由三視圖知:側(cè)棱,∴平面平面

    平面

    就是與面所成角的平面角………………3分

    ,。故,又正方形

    中,∴,∴

    ………………3分

    綜上知與面所成角的大小的余弦值為

    21.解(1)當(dāng),時(shí),,………………1分

    ………………2分

    ∴當(dāng)時(shí),此時(shí)為減函數(shù),………………1分

    當(dāng)時(shí),些時(shí)為增函數(shù)………………1分

    當(dāng)時(shí),求函數(shù)的最大值………………2分

    (2)………………1分

    ①當(dāng)時(shí),在,

    上為減函數(shù),∴,則

    ………………3分

    ②當(dāng)時(shí),

    上為減函數(shù),則

    上為增函數(shù),在上為減函數(shù),在上為增函數(shù),則

    ,∴………………3分

    綜上可知,的取值范圍為………………1分

     

    22.(1)記A點(diǎn)到準(zhǔn)線距離為,直線的傾斜角為,

    由拋物線的定義知,………………………2分

    ………………………3分

    (2)設(shè),,

    ,………………………2分

    ,同理……………………2分

    ,…………………………2分

    即:,

        ∴,…………………………2分

    ,得

    得,

    的取值范圍為…………………………2分

     

    命題人

    呂峰波(嘉興)  王書(shū)朝(嘉善)  王云林(平湖)

    胡水林(海鹽)  顧貫石(海寧)  張曉東(桐鄉(xiāng))

         吳明華、張啟源、徐連根、洗順良、李富強(qiáng)、吳林華

     

     

     


    同步練習(xí)冊(cè)答案