亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    極大值為f (-1)=0 極小值為f (-)= 6分 查看更多

     

    題目列表(包括答案和解析)

    已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
    (1)求函數(shù)f(x)的解析式;
    (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

    查看答案和解析>>

    已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
    (1)求函數(shù)f(x)的解析式;
    (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

    查看答案和解析>>

    已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
    (1)求函數(shù)f(x)的解析式;
    (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

    查看答案和解析>>

    已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
    (1)求函數(shù)f(x)的解析式;
    (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

    查看答案和解析>>

    已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

    (1)求f(x)的解析式;

    (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

    【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

    (2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

    然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

    解:(1)f′(x)=3ax2+2bx+c

    依題意

    又f′(0)=-3

    ∴c=-3 ∴a=1 ∴f(x)=x3-3x

    (2)設(shè)切點為(x0,x03-3x0),

    ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

    ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

    又切線過點A(2,m)

    ∴m-(x03-3x0)=(3x02-3)(2-x0)

    ∴m=-2x03+6x02-6

    令g(x)=-2x3+6x2-6

    則g′(x)=-6x2+12x=-6x(x-2)

    由g′(x)=0得x=0或x=2

    ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

    ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

    畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

    所以m的取值范圍是(-6,2).

     

    查看答案和解析>>


    同步練習(xí)冊答案