題目列表(包括答案和解析)
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設數(shù)列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數(shù)學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數(shù)列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數(shù)列
為單調遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
已知是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列
中存在某個連續(xù)p項的和式數(shù)列中
的一項,請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當時,則
即
,其中
是大于等于
的整數(shù)
反之當時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設當
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數(shù)時,
結合二項式定理得到結論。
解(1)由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當時,則
即
,其中
是大于等于
的整數(shù)反之當
時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設當
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數(shù)時,
由
,得
當
為奇數(shù)時,此時,一定有
和
使上式一定成立。
當
為奇數(shù)時,命題都成立
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(O為坐標原點),當
<
時,求實數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
汕頭二中擬建一座長米,寬
米的長方形體育館.按照建筑要求,每隔
米(
,
為正常數(shù))需打建一個樁位,每個樁位需花費
萬元(樁位視為一點且打在長方形的邊上),樁位之間的
米墻面需花
萬元,在不計地板和天花板的情況下,當
為何值時,所需總費用最少?
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。先求需打個樁位.再求解墻面所需費用為:
,最后表示總費用
,利用導數(shù)判定單調性,求解最值。
解:由題意可知,需打個樁位.
…………………2分
墻面所需費用為:,……4分
∴所需總費用(
)…7分
令,則
當時,
;當
時,
.
∴當時,
取極小值為
.而在
內極值點唯一,所以
.∴當
時,
(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com