題目列表(包括答案和解析)
在數(shù)列中,
,其中
,對任意
都有:
;(1)求數(shù)列
的第2項(xiàng)和第3項(xiàng);
(2)求數(shù)列的通項(xiàng)公式
,假設(shè)
,試求數(shù)列
的前
項(xiàng)和
;
(3)若對一切
恒成立,求
的取值范圍。
【解析】第一問中利用)同理得到
第二問中,由題意得到:
累加法得到
第三問中,利用恒成立,轉(zhuǎn)化為最小值大于等于即可。得到范圍。
(1)同理得到
……2分
(2)由題意得到:
又
……5分
……8分
(3)
如圖,橢圓E:的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率
。過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8
(Ⅰ)求橢圓E的方程。
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q。試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由
【解析】
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B
的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[
【解析】第一問中因?yàn)橹本經(jīng)過點(diǎn)
(
,0),所以
=
,得
.又因?yàn)閙>1,所以
,故直線的方程為
第二問中設(shè),由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點(diǎn).由
可知
從而
,設(shè)M是GH的中點(diǎn),則M(
).
由題意可知,2|MO|<|GH|,得到范圍
三棱柱中,側(cè)棱與底面垂直,
,
,
分別是
,
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐的體積.
【解析】第一問利連結(jié),
,∵M(jìn),N是AB,
的中點(diǎn)∴MN//
.
又∵平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴
.∴
.連結(jié)
,
.
∴,又N中
的中點(diǎn),∴
.
∵與
相交于點(diǎn)C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-的高.在直角
中,
,
∴MN=.又
.
.得到結(jié)論。
⑴連結(jié),
,∵M(jìn),N是AB,
的中點(diǎn)∴MN//
.
又∵平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,
∴四邊形是正方形.∴
.
∴.連結(jié)
,
.
∴,又N中
的中點(diǎn),∴
.
∵與
相交于點(diǎn)C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-的高.在直角
中,
,
∴MN=.又
.
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求與
的值;
(Ⅱ)設(shè)是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為
, 直線
與
軸交點(diǎn)為
,連接
交拋物線
于
、
兩點(diǎn),求△
的面積
的取值范圍.
【解析】第一問中利用圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問中,由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
第三問中,設(shè)直線,代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
上.…(2分)
(Ⅲ)設(shè)直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com