亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    19. 查看更多

     

    題目列表(包括答案和解析)

    (本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

    (1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

    查看答案和解析>>

    (本小題滿分12分)已知等比數(shù)列{an}中, 

       (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

       (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

       (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

    查看答案和解析>>

    (本小題滿分12分)已知函數(shù),其中a為常數(shù).

       (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

       (Ⅱ)求的單調(diào)區(qū)間.

    查看答案和解析>>

    (本小題滿分12分)

    甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

       (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

       (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

    查看答案和解析>>

    (本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

       (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

       (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

    查看答案和解析>>

     

    一、選擇題

    1―5 CADBA    6―10 CBABD    11―12 CC

    二、填空題

    13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

    16.①③

    三、解答題

    17.解:(1)由題意得   ………………2分

       

       (2)由可知A、B都是銳角,   …………7分

       

        這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

    18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

       

       (2)   ………………12分

       (文)解:(1);  ………………6分

       (2)因?yàn)?sub>

          …………10分

        所以   …………12分

    19.解:(1),   ………………1分

        依題意知,   ………………3分

       (2)令   …………4分

         …………5分

        所以,…………7分

       (3)由上可知

        ①當(dāng)恒成立,

        必須且只須, …………8分

       

         則   ………………9分

        ②當(dāng)……10分

        要使當(dāng)

        綜上所述,t的取值范圍是   ………………12分

    20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求!1分

       

       (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

    則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

    因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

    作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

    求得 …………8分

    方法二:設(shè)B1到平面PAB的距離為h,則由

      ………………8分

       (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

    則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

    所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

    要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

    在矩形CEE1C1中,

    解得

          <td id="rjvax"><strong id="rjvax"></strong></td>
          <rt id="m6mg4"><tbody id="m6mg4"></tbody></rt>
        • 解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1,

          以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

             (2)是平面PAB的一個(gè)法向量,

             ………………5分

             ………………6分

            ………………8分

             (3)設(shè)P點(diǎn)坐標(biāo)為(),則

          設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

              令

              同理可求得平面PA1B1的一個(gè)法向量   ………………10分

              要使平面PAB⊥平面PA1B1,只需

                ………………11分

              解得: …………12分

          21.(理)解:(1)由條件得

             

             (2)①設(shè)直線m ……5分

             

              ②不妨設(shè)M,N的坐標(biāo)分別為

          …………………8分

          因直線m的斜率不為零,故

             (文)解:(1)設(shè)  …………2分

             

              故所求雙曲線方程為:

             (2)設(shè),

             

              由焦點(diǎn)半徑,  ………………8分

             

          22.(1)證明:

              所以在[0,1]上為增函數(shù),   ………………3分

             (2)解:由

             

             (3)解:由(1)與(2)得 …………9分

              設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

                 ………………10分

             

              ,   ………………11分

              當(dāng),   ………………12分

              當(dāng)    ………………13分

              所在存在正整數(shù)

              都有成立.   ………………14分

           

           

           

           

            <center id="m6mg4"><tbody id="m6mg4"></tbody></center>
            • <source id="m6mg4"><small id="m6mg4"></small></source>
            • <dd id="m6mg4"><abbr id="m6mg4"></abbr></dd>
              <center id="m6mg4"><code id="m6mg4"></code></center>