題目列表(包括答案和解析)
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求與
的值;
(Ⅱ)設(shè)是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為
, 直線
與
軸交點(diǎn)為
,連接
交拋物線
于
、
兩點(diǎn),求△
的面積
的取值范圍.
【解析】第一問(wèn)中利用圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問(wèn)中,由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
第三問(wèn)中,設(shè)直線,代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
上.…(2分)
(Ⅲ)設(shè)直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在
軸上,
與拋物線
的準(zhǔn)線交于
兩點(diǎn),
;則
的實(shí)軸長(zhǎng)為( )
【解析】設(shè)等軸雙曲線方程為,拋物線的準(zhǔn)線為
,由
,則
,把坐標(biāo)
代入雙曲線方程得
,所以雙曲線方程為
,即
,所以
,所以實(shí)軸長(zhǎng)
,選C.
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間
上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)時(shí),
,則
。
依題意得:,即
解得
第二問(wèn)當(dāng)時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),
,令
得
當(dāng)變化時(shí),
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又,
,
!
在
上的最大值為2.
②當(dāng)時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)時(shí),
在
上單調(diào)遞增!
在
最大值為
。
綜上,當(dāng)時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則
代入(*)式得:
即,而此方程無(wú)解,因此
。此時(shí)
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到
。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知曲線上動(dòng)點(diǎn)
到定點(diǎn)
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過(guò)點(diǎn)引曲線C的弦AB恰好被點(diǎn)
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)
為圓心作圓
:
,設(shè)圓
與曲線
交于點(diǎn)
與點(diǎn)
,求
的最小值,并求此時(shí)圓
的方程.
【解析】第一問(wèn)利用(1)過(guò)點(diǎn)作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問(wèn)當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得
第三問(wèn)點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱(chēng),設(shè),, 不妨設(shè)
.
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)
時(shí),
取得最小值為
.
計(jì)算得,,故
,又點(diǎn)
在圓
上,代入圓的方程得到
.
故圓T的方程為:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com