亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    6.對于平面直角坐標系內任意兩點(.).(.).定義它們之間的一種“距離 :||=??+??.給出下列三個命題:①若點C在線段AB上.則|AC|+|CB|=|AB|, 查看更多

     

    題目列表(包括答案和解析)

    對于平面直角坐標系內的任意兩點A(x1,y1),B(x2,y2),A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
    ①若點C在線段AB上,則||AC||+||CB||=||AB||;
    ②在△ABC中,||AC||+||CB||>||AB||;
    ③在△ABC中,若∠A=90°,則||AB||2+||AC||2=||BC||2
    其中錯誤的個數(shù)為(  )
    A、0B、1C、2D、3

    查看答案和解析>>

    (08年雅禮中學一模理)對于平面直角坐標系內任意兩點,)、,),定義它們之間的一種“距離”:‖‖=+.給出下列三個命題:

    ①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;

    ②在△ABC中,若∠C=90°,則‖AC+‖CB=‖AB;

    ③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

    其中真命題的個數(shù)為                                                    (   )

    A  0                B  1                 C  2             D  3

    查看答案和解析>>

    (08年石景山區(qū)統(tǒng)一測試)對于平面直角坐標系內任意兩點)、),定義它們之間的一種“距離”:‖‖=+.給出下列三個命題:

    ①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;

    ②在△ABC中,若∠C=90°,則‖AC+‖CB=‖AB;

    ③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

    其中真命題的個數(shù)為(   )

    A.              B.              C.              D.

    查看答案和解析>>

    精英家教網(wǎng)如圖揭示了一個由區(qū)間(0,1)到實數(shù)集R上的對應過程:區(qū)間(0,1)內的任意實數(shù)m與數(shù)軸上的線段AB(不包括端點)上的點M一一對應(圖一),將線段AB圍成一個圓,使兩端A,B恰好重合(圖二),再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為(0,1)(圖三).圖三中直線AM與x軸交于點N(n,0),由此得到一個函數(shù)n=f(m),則下列命題中正確的序號是( 。
    (1)f(
    1
    2
    )=0;     
    (2)f(x)是偶函數(shù);   
    (3)f(x)在其定義域上是增函數(shù);
    (4)y=f(x)的圖象關于點(
    1
    2
    ,0)對稱.
    A、(1)(3)(4)
    B、(1)(2)(3)
    C、(1)(2)(4)
    D、(1)(2)(3)(4)

    查看答案和解析>>

    在平面直角坐標系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
    (1)求⊙C和橢圓D的標準方程;
    (2)當b=1時,求證:橢圓D上任意一點都不在⊙C的內部;
    (3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關于x軸的對稱點為N,設直線QN交x軸于點L,試判斷
    OM
    OL
    是否為定值?并證明你的結論.

    查看答案和解析>>

    一、選擇題:

    ADBAA    BCCDC

    二、填空題:

    11. ;        12. ;      13

    14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

    三、解答題:

    16.解:(Ⅰ)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (Ⅱ)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

    17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

    第二天通過檢查的概率為,                  …………………………4分

    由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

    (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

    第二天通過而第一天不通過檢查的概率為,      ………………10分

    由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

     

    18.解:方法一

    (Ⅰ)取的中點,連結,由,又,故,所以即為二面角的平面角.

    在△中,,,

    由余弦定理有

    所以二面角的大小是.                              (6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

    .                              …(12分)

     

    19.解:(Ⅰ)設

    則   ……①

         ……②

    ∴②-①得  2d2=0,∴d=p=0

                                                …………6分

    (Ⅱ)當an=n時,恒等式為[S(1,n)]2=S(3,n)

    證明:

    相減得:

    相減得:

                                             ………………………………13分

    20.解:(Ⅰ)∵,∴,

    又∵,∴,

    ,

    ∴橢圓的標準方程為.                                      ………(3分)

    的斜率為0時,顯然=0,滿足題意,

    的斜率不為0時,設方程為,

    代入橢圓方程整理得:

    ,

              ,

    ,從而

    綜合可知:對于任意的割線,恒有.                ………(8分)

    (Ⅱ),

    即:,

    當且僅當,即(此時適合于的條件)取到等號.

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

     

    21.解:(Ⅰ)              ……………………………………………4分

    (Ⅱ)或者……………………………………………8分

    (Ⅲ)略                                        ……………………………………13分

     

     

     

    雅禮中學08屆高三第八次質檢數(shù)學(文科)試題參考答案

     

    一、選擇題:

    ADBAA    BCCDC

     

    二、填空題:

    11. ;        12. ;      13

    14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

     

    三、解答題:

     

    16.解:(Ⅰ)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (Ⅱ)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

     

    17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

    第二天通過檢查的概率為,                  …………………………4分

    由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

    (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

    第二天通過而第一天不通過檢查的概率為,      ………………10分

    由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

     

     

     

     

     

    18.解:方法一

    (Ⅰ)取的中點,連結,由,又,故,所以即為二面角的平面角.

    在△中,,,,

    由余弦定理有

    ,

     

    所以二面角的大小是.                              (6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

    .                              …(12分)

     

    19.解:(Ⅰ)設

    則   ……①

         ……②

    ∴②-①得  2d2=0,∴d=p=0

                                                …………6分

    (Ⅱ)當an=n時,恒等式為[S(1,n)]2=S(3,n)

    證明:

    相減得:

    相減得:

                                             ………………………………13分

     

    20.解:(Ⅰ)∵,∴,

    又∵,∴,

    ,

    ∴橢圓的標準方程為.                                      ………(3分)

    的斜率為0時,顯然=0,滿足題意,

    的斜率不為0時,設方程為,

    代入橢圓方程整理得:

    ,

              ,

    ,從而

    綜合可知:對于任意的割線,恒有.                ………(8分)

    (Ⅱ),

    即:

    當且僅當,即(此時適合于的條件)取到等號.

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

     

    21.解:(Ⅰ)              ……………………………………………4分

    (Ⅱ)或者……………………………………………8分

    (Ⅲ)略                                        ……………………………………13分


    同步練習冊答案