亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅰ)若的1方數(shù)列.2方數(shù)列都是等差數(shù)列.a1=a.求的k方數(shù)列通項(xiàng)公式. 查看更多

     

    題目列表(包括答案和解析)

    若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對(duì)任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
    (1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L(zhǎng)型數(shù)列?若是,寫出對(duì)應(yīng)p、q的值;若不是,說明理由.
    (2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
    (3)請(qǐng)你提出一個(gè)關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

    查看答案和解析>>

    有下列命題:

    ①已知a,b為實(shí)數(shù),若a24b0,則x2axb0有非空實(shí)數(shù)解集.

    ②當(dāng)2m10時(shí),如果0,那么m>-4

    ③若a,b是整數(shù),則關(guān)于x的方程x2axb0有兩整數(shù)根.

    ④若ab都不是整數(shù),則方程x2axb0無兩整數(shù)根.

    ⑤當(dāng)2m10時(shí),如果m≤-4,則0

    ⑥已知ab為實(shí)數(shù),若x2axb0有非空實(shí)數(shù)解,則a24b0

    ⑦若方程x2axb0沒有兩整數(shù)根,則a不是整數(shù)或b不是整數(shù).

    ⑧已知a、b為實(shí)數(shù),若a24b0,則關(guān)于x的不等式x2axb0的解集為空集.

    ⑨當(dāng)2m10時(shí),如果m>-4,則0

    用序號(hào)表示上述命題間的關(guān)系(例(1)與(9)互為逆否命題):其中(1___________是互為逆命題;(2___________互為否命題;(3___________互為逆否命題

    查看答案和解析>>

    有下列命題:

    ①已知a,b為實(shí)數(shù),若a24b0,則x2axb0有非空實(shí)數(shù)解集.

    ②當(dāng)2m10時(shí),如果0,那么m>-4

    ③若a,b是整數(shù),則關(guān)于x的方程x2axb0有兩整數(shù)根.

    ④若a、b都不是整數(shù),則方程x2axb0無兩整數(shù)根.

    ⑤當(dāng)2m10時(shí),如果m≤-4,則0

    ⑥已知a,b為實(shí)數(shù),若x2axb0有非空實(shí)數(shù)解,則a24b0

    ⑦若方程x2axb0沒有兩整數(shù)根,則a不是整數(shù)或b不是整數(shù).

    ⑧已知a、b為實(shí)數(shù),若a24b0,則關(guān)于x的不等式x2ax+b0的解集為空集.

    ⑨當(dāng)2m10時(shí),如果m>-4,則0

    用序號(hào)表示上述命題間的關(guān)系(例(1)與(9)互為逆否命題):其中(1___________是互為逆命題;(2___________互為否命題;(3___________互為逆否命題

    查看答案和解析>>

    如果一個(gè)數(shù)列的各項(xiàng)均為實(shí)數(shù),且從第二項(xiàng)起開始,每一項(xiàng)的平方與它前一項(xiàng)的平方的差都是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公方差.
    (1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,求b7;
    (2)是否存在一個(gè)非常數(shù)數(shù)列的等差數(shù)列或等比數(shù)列,同時(shí)也是等方差數(shù)列?若存在,求出這個(gè)數(shù)列;若不存在,說明理由.
    (3)若正項(xiàng)數(shù)列{an}是首項(xiàng)為2、公方差為4的等方差數(shù)列,數(shù)列{
    1
    an
    }
    的前n項(xiàng)和為Tn,是否存在正整數(shù)p,q,使不等式Tn
    pn+q
    -1
    對(duì)一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

    查看答案和解析>>

    如果一個(gè)數(shù)列的各項(xiàng)均為實(shí)數(shù),且從第二項(xiàng)起開始,每一項(xiàng)的平方與它前一項(xiàng)的平方的差都是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公方差.
    (1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,求b7
    (2)是否存在一個(gè)非常數(shù)數(shù)列的等差數(shù)列或等比數(shù)列,同時(shí)也是等方差數(shù)列?若存在,求出這個(gè)數(shù)列;若不存在,說明理由.
    (3)若正項(xiàng)數(shù)列{an}是首項(xiàng)為2、公方差為4的等方差數(shù)列,數(shù)列的前n項(xiàng)和為Tn,是否存在正整數(shù)p,q,使不等式對(duì)一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

    查看答案和解析>>

    一、選擇題:

    ADBAA    BCCDC

    二、填空題:

    11. ;        12. ;      13

    14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

    三、解答題:

    16.解:(Ⅰ)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (Ⅱ)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

    17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

    第二天通過檢查的概率為,                  …………………………4分

    由相互獨(dú)立事件得兩天全部通過檢查的概率為.        ………………6分

    (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

    第二天通過而第一天不通過檢查的概率為,      ………………10分

    由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

     

    18.解:方法一

    (Ⅰ)取的中點(diǎn),連結(jié),由,又,故,所以即為二面角的平面角.

    在△中,,,

    由余弦定理有

    ,

    所以二面角的大小是.                              (6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點(diǎn)到平面的距離即為△的邊上的高.

    .                              …(12分)

     

    19.解:(Ⅰ)設(shè)

    則   ……①

         ……②

    ∴②-①得  2d2=0,∴d=p=0

                                                …………6分

    (Ⅱ)當(dāng)an=n時(shí),恒等式為[S(1,n)]2=S(3,n)

    證明:

    相減得:

    相減得:

                                             ………………………………13分

    20.解:(Ⅰ)∵,∴,

    又∵,∴

    ,

    ∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

    當(dāng)的斜率為0時(shí),顯然=0,滿足題意,

    當(dāng)的斜率不為0時(shí),設(shè)方程為,

    代入橢圓方程整理得:

    ,,

              ,

    ,從而

    綜合可知:對(duì)于任意的割線,恒有.                ………(8分)

    (Ⅱ)

    即:,

    當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

     

    21.解:(Ⅰ)              ……………………………………………4分

    (Ⅱ)或者……………………………………………8分

    (Ⅲ)略                                        ……………………………………13分

     

     

     

    雅禮中學(xué)08屆高三第八次質(zhì)檢數(shù)學(xué)(文科)試題參考答案

     

    一、選擇題:

    ADBAA    BCCDC

     

    二、填空題:

    11. ;        12. ;      13

    14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

     

    三、解答題:

     

    16.解:(Ⅰ)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (Ⅱ)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

     

    17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

    第二天通過檢查的概率為,                  …………………………4分

    由相互獨(dú)立事件得兩天全部通過檢查的概率為.        ………………6分

    (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

    第二天通過而第一天不通過檢查的概率為,      ………………10分

    由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

     

     

     

     

     

    18.解:方法一

    (Ⅰ)取的中點(diǎn),連結(jié),由,又,故,所以即為二面角的平面角.

    在△中,,,

    由余弦定理有

     

    所以二面角的大小是.                              (6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點(diǎn)到平面的距離即為△的邊上的高.

    .                              …(12分)

     

    19.解:(Ⅰ)設(shè)

    則   ……①

         ……②

    ∴②-①得  2d2=0,∴d=p=0

                                                …………6分

    (Ⅱ)當(dāng)an=n時(shí),恒等式為[S(1,n)]2=S(3,n)

    證明:

    相減得:

    相減得:

                                             ………………………………13分

     

    20.解:(Ⅰ)∵,∴

    又∵,∴,

    ,

    ∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

    當(dāng)的斜率為0時(shí),顯然=0,滿足題意,

    當(dāng)的斜率不為0時(shí),設(shè)方程為

    代入橢圓方程整理得:

    ,,

             

    ,從而

    綜合可知:對(duì)于任意的割線,恒有.                ………(8分)

    (Ⅱ)

    即:,

    當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

     

    21.解:(Ⅰ)              ……………………………………………4分

    (Ⅱ)或者……………………………………………8分

    (Ⅲ)略                                        ……………………………………13分


    同步練習(xí)冊(cè)答案