亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    當(dāng)時.取極大值且函數(shù)圖象關(guān)于點對稱 查看更多

     

    題目列表(包括答案和解析)

    設(shè)定義在R的函數(shù)R. 當(dāng)時,取得極大值,且函數(shù)的圖象關(guān)于點對稱.

     (I)求函數(shù)的表達式;

     (II)判斷函數(shù)的圖象上是否存在兩點,使得以這兩點為切點的切線互相垂直,且切點的橫坐標(biāo)在區(qū)間上,并說明理由;

     (III)設(shè),),求證:.

    查看答案和解析>>

    設(shè)定義在R的函數(shù),R. 當(dāng)時,取得極大值,且函數(shù)的圖象關(guān)于點對稱.
    (I)求函數(shù)的表達式;
    (II)判斷函數(shù)的圖象上是否存在兩點,使得以這兩點為切點的切線互相垂直,且切點的橫坐標(biāo)在區(qū)間上,并說明理由;
     (III)設(shè),),求證:.

    查看答案和解析>>

    設(shè)函數(shù) (a、bc、d∈R)圖象C關(guān)于原點對稱,且x=1時,取極小值

    (1)求f(x)的解析式;

    (2)當(dāng)時,求函數(shù)f(x)的最大值.

     

    查看答案和解析>>

    設(shè)函數(shù) (a、b、c、d∈R)圖象C關(guān)于原點對稱,且x=1時,取極小值

    (1)求f(x)的解析式;

    (2)當(dāng)時,求函數(shù)f(x)的最大值

     

    查看答案和解析>>

    (本小題滿分12分)  設(shè)定義在R上的函數(shù),當(dāng)時,f (x)取得極大值,并且函數(shù)的圖象關(guān)于y軸對稱.   (Ⅰ)求f(x)的表達式;   (Ⅱ)若曲線對應(yīng)的解析式為,求曲線過點的切線方程.

    高☆考♂資♀源*網(wǎng)

    查看答案和解析>>

    一、選擇題:

    ADBAA    BCCDC

    二、填空題:

    11. ;        12. ;      13

    14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

    三、解答題:

    16.解:(Ⅰ)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (Ⅱ)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

    17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

    第二天通過檢查的概率為,                  …………………………4分

    由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

    (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

    第二天通過而第一天不通過檢查的概率為,      ………………10分

    由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

     

    18.解:方法一

    (Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

    在△中,,,

    由余弦定理有

    所以二面角的大小是.                              (6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

    .                              …(12分)

     

    19.解:(Ⅰ)設(shè)

    則   ……①

         ……②

    ∴②-①得  2d2=0,∴d=p=0

                                                …………6分

    (Ⅱ)當(dāng)an=n時,恒等式為[S(1,n)]2=S(3,n)

    證明:

    相減得:

    相減得:

                                             ………………………………13分

    20.解:(Ⅰ)∵,∴,

    又∵,∴,

    ,

    ∴橢圓的標(biāo)準方程為.                                      ………(3分)

    當(dāng)的斜率為0時,顯然=0,滿足題意,

    當(dāng)的斜率不為0時,設(shè)方程為,

    代入橢圓方程整理得:

    ,,

             

    ,從而

    綜合可知:對于任意的割線,恒有.                ………(8分)

    (Ⅱ)

    即:,

    當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

     

    21.解:(Ⅰ)              ……………………………………………4分

    (Ⅱ)或者……………………………………………8分

    (Ⅲ)略                                        ……………………………………13分

     

     

     

    雅禮中學(xué)08屆高三第八次質(zhì)檢數(shù)學(xué)(文科)試題參考答案

     

    一、選擇題:

    ADBAA    BCCDC

     

    二、填空題:

    11. ;        12. ;      13

    14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

     

    三、解答題:

     

    16.解:(Ⅰ)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (Ⅱ)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

     

    17.解:(Ⅰ)第一天通過檢查的概率為,       ………………………2分

    第二天通過檢查的概率為,                  …………………………4分

    由相互獨立事件得兩天全部通過檢查的概率為.        ………………6分

    (Ⅱ)第一天通過而第二天不通過檢查的概率為,    …………8分

    第二天通過而第一天不通過檢查的概率為,      ………………10分

    由互斥事件得恰有一天通過檢查的概率為.     ……………………12分

     

     

     

     

     

    18.解:方法一

    (Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

    在△中,,,,

    由余弦定理有

     

    所以二面角的大小是.                              (6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

    .                              …(12分)

     

    19.解:(Ⅰ)設(shè)

    則   ……①

         ……②

    ∴②-①得  2d2=0,∴d=p=0

                                                …………6分

    (Ⅱ)當(dāng)an=n時,恒等式為[S(1,n)]2=S(3,n)

    證明:

    相減得:

    相減得:

                                             ………………………………13分

     

    20.解:(Ⅰ)∵,∴,

    又∵,∴,

    ∴橢圓的標(biāo)準方程為.                                      ………(3分)

    當(dāng)的斜率為0時,顯然=0,滿足題意,

    當(dāng)的斜率不為0時,設(shè)方程為,

    代入橢圓方程整理得:

    ,,

             

    ,從而

    綜合可知:對于任意的割線,恒有.                ………(8分)

    (Ⅱ)

    即:,

    當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

     

    21.解:(Ⅰ)              ……………………………………………4分

    (Ⅱ)或者……………………………………………8分

    (Ⅲ)略                                        ……………………………………13分


    同步練習(xí)冊答案