亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    21. 查看更多

     

    題目列表(包括答案和解析)

    (本小題滿分13分)有一問題,在半小時內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是

     如果兩人都試圖獨立地在半小時內(nèi)解決它,計算:w.w.w.k.s.5.u.c.o.m      

       (1)兩人都未解決的概率;

       (2)問題得到解決的概率。

    查看答案和解析>>

    (本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

    (1) 求數(shù)列、的通項公式;

    (2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

    查看答案和解析>>

    (本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運往B地,已知貨船的最大航行速度為35海里/小時,A地至B地之間的航行距離約為500海里,每小時的運輸成本由燃料費和其余費用組成,輪船每小時的燃料費用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費用為每小時960元.

    (1)把全程運輸成本y(元)表示為速度x(海里/小時)的函數(shù);

    (2)為了使全程運輸成本最小,輪船應(yīng)以多大速度行駛?

    查看答案和解析>>

    (本小題滿分13分)

    如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點,都與平面ABCD垂直,

    (Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

    (Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

    體ABCDEF的體積。

     

    查看答案和解析>>

    (本小題滿分13分)兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

    查看答案和解析>>

     

    一、選擇題:ADBAA    BCCDB

    二、填空題

    11.;        12. ;          13

    14.()③⑤  ()②⑤              15. (;    () 0

    三、解答題:

    16.解:(1)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (2)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

    17.解:(Ⅰ)

    (Ⅱ)

    1當(dāng)時,則.此時輪船更安全.

    2當(dāng)時,則.此時輪船和輪船一樣安全.

    3當(dāng)時,則.此時輪船更安全.

    解:方法一

    (Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

    在△中,,,

    由余弦定理有

    ,

    所以二面角的大小是.(6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

    .                             …(12分)

     

    19.解: (Ⅰ)∵△ABC的邊長為2a,DAB上,則ax2a,?

    ∵△ADE面積等于△ABC面積的一半,

    x?AEsin60°=?2a2,?

    解得AE,?

    在△ADE中,由余弦定理:?

    y2x2?cos60°,?

    y2x22a2

    y  (ax2a)?

    (Ⅱ)證明:∵y  (ax2a),令x2t,則a2t4a2

    y,設(shè)ft)=ta2t4a2)?

    當(dāng)t∈(a2,2a2)時,任取a2t1t22a2,?

    ft1)-ft2)=(t1)-(t2

    =(t1t2)?,?

    a2t1t22a2?

    t1t2>0,t1t2>0,t1t24a4<0?

    ft1)-ft2)>0,即ft1)>ft2)?

    fx)在(a22a2)上是減函數(shù).?

    同理可得,fx)在(2a2,4a2)上是增函數(shù).?

    又∵f2a2)=4a2fa2)=f4a2)=5a2,當(dāng)t2a2時,fx)有最小值,即xa時,y有最小值,且ymin=a,此時DEBCADa;當(dāng)ta24a2時,fx)有最大值,即xa2a時,y有最大值,且ymaxa,此時DEABAC邊上的中線.?

     

    20.解:(Ⅰ)∵,∴,

    又∵,∴,

    ∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

    當(dāng)的斜率為0時,顯然=0,滿足題意,

    當(dāng)的斜率不為0時,設(shè)方程為,

    代入橢圓方程整理得:

    ,

             

    ,從而

    綜合可知:對于任意的割線,恒有.                ………(8分)

    (Ⅱ)

    即:,

    當(dāng)且僅當(dāng),即(此時適合于的條件)取到等號.

    ∴三角形△ABF面積的最大值是.                 ………………………………(13分)

    21.解:(Ⅰ)由

    故x>0或x≤-1

    f(x)定義域為                          …………………………(4分)

    (Ⅱ)

    下面使用數(shù)學(xué)歸納法證明:

    ①在n=1時,a1=1,<a1<2,則n=1時(*)式成立.

    ②假設(shè)n=k時成立,

    要證明:

    只需

    只需(2k+1)3≤8k(k+1)2

    只需1≤4k2+2k

    而4k2+2k≥1在k≥1時恒成立.

    只需證:4k2+11k+8>0,而4k2+11k+8>0在k≥1時恒成立.

    于是:

    因此得證.

    綜合①②可知(*)式得證.從而原不等式成立.                     ………………9分

    (Ⅲ)要證明:

    由(2)可知只需證:

    …………(**)

    下面用分析法證明:(**)式成立。

    要使(**)成立,只需證:

    即只需證:(3n-2)3n>(3n-1)3(n-1)

    只需證:2n>1

    而2n>1在n≥1時顯然成立.故(**)式得證:

    于是由(**)式可知有:

    因此有:

                         ……………………………………(13分)

     

     

     

    雅禮中學(xué)2008屆高三第八次質(zhì)檢數(shù)學(xué)(理科)試題參考答案

     

    一、選擇題:ADBAA    BCCDB

    二、填空題

    11.;        12. ;          13

    14.()③⑤  ()②⑤              15. (;    () 0

    三、解答題:

    16.解:(1)

                                                                    …………5分

    成等比數(shù)列,知不是最大邊

                                                        …………6分

    (2)由余弦定理

    ac=2                                                                                                        …………11分

    =                                                                          …………12分

    17.解:(Ⅰ)

    (Ⅱ)

    1當(dāng)時,則.此時輪船更安全.

    2當(dāng)時,則.此時輪船和輪船一樣安全.

    3當(dāng)時,則.此時輪船更安全.

    解:方法一

    (Ⅰ)取的中點,連結(jié),由,又,故,所以即為二面角的平面角.

    在△中,,,

    由余弦定理有

    ,

    所以二面角的大小是.(6分)

    (Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

    .                             …(12分)

     

    19.解: (Ⅰ)∵△ABC的邊長為2a,DAB上,則ax2a,?

    ∵△ADE面積等于△ABC面積的一半,

    x?AEsin60°=?2a2,?

    解得AE,?

    在△ADE中,由余弦定理:?

    y2x2?cos60°,?

    y2x22a2

    y  (ax2a)?

    (Ⅱ)證明:∵y  (ax2a),令x2t,則a2t4a2

    y,設(shè)ft)=ta2t4a2)?

    當(dāng)t∈(a2,2a2)時,任取a2t1t22a2,?

    ft1)-ft2)=(t1)-(t2

    =(t1t2)?,?

    a2t1t22a2?

    t1t2>0,t1t2>0,t1t24a4<0?

    ft1)-ft2)>0,即ft1)>ft2)?

    fx)在(a2,2a2)上是減函數(shù).?

    同理可得,fx)在(2a24a2)上是增函數(shù).?

    又∵f2a2)=4a2,fa2)=f4a2)=5a2,當(dāng)t2a2時,fx)有最小值,即xa時,y有最小值,且ymin=a,此時DEBCADa;當(dāng)ta24a2時,fx)有最大值,即xa2a時,y有最大值,且ymaxa,此時DEABAC邊上的中線.?

     

    20.解:(Ⅰ)∵,∴

    又∵,∴

    ,

    ∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

    當(dāng)的斜率為0時,顯然=0,滿足題意,

    當(dāng)的斜率不為0時,設(shè)

    同步練習(xí)冊答案