亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    h(x).所以g(x)=[f(x)-f(-x)]=lg=lg10x=.應(yīng)選C.評述:本題考查了奇偶函數(shù).對數(shù)函數(shù)的概念和性質(zhì).要求有較強的運算能力.本題背景新穎.對分析問題和解決問題的能力有較高要求. 查看更多

     

    題目列表(包括答案和解析)

    已知

    (1)求的單調(diào)區(qū)間;

    (2)證明:當時,恒成立;

    (3)任取兩個不相等的正數(shù),且,若存在使成立,證明:

    【解析】(1)g(x)=lnx+,=        (1’)

    當k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

    當k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

    (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當x變化時,h(x),的變化情況如表

    x

    1

    (1,e)

    e

    (e,+)

     

    0

    +

    h(x)

    e-2

    0

    所以h(x)0, ∴f(x)2x-e                    (5’)

    設(shè)G(x)=lnx-(x1) ==0,當且僅當x=1時,=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當x1時, 2x-ef(x)恒成立.

    (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

    ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

     

    查看答案和解析>>

    若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x)且x∈[-1,1]時,f(x)=1-x2,函數(shù)g(x)=
    lgx(x>0)
    -
    1
    x
    (x<0)
    ,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)零點的個數(shù)有
    8
    8
     個.

    查看答案和解析>>

    設(shè)函數(shù)f(x)=alnx,g(x)=
    12
    x2
    (1)記h(x)=f(x)-g(x),若a=4,求h(x)的單調(diào)遞增區(qū)間;
    (2)記g'(x)為g(x)的導(dǎo)函數(shù),若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求實數(shù)a的取值范圍;
    (3)若a=1,對任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

    查看答案和解析>>

    (2012•瀘州模擬)函數(shù)f(x)=
    12
    x2+2ax
    與函數(shù)g(x)=3a2lnx+b.
    (I)設(shè)曲線y=f(x)與曲線y=g(x)在公共點處的切線相同,且f(x)在x=-2e(e是自然對數(shù)的底數(shù))時取得極值,求a、b的值;
    (II)若函數(shù)g(x)的圖象過點(1,0)且函數(shù)h(x)=f(x)+g(x)-(2a+6)x在(0,4)上為單調(diào)函數(shù),求a的取值范圍.

    查看答案和解析>>

    (2013•淄博一模)已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
    (Ⅰ)當a=0時,求f(x)的極值;
    (Ⅱ)當a<0時,求f(x)的單調(diào)區(qū)間;
    (Ⅲ)當-3<a<-2時,若存在λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|>(m+ln3)a-2ln3成立,求m的取值范圍.

    查看答案和解析>>


    同步練習冊答案