亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    16.解析:③在[0.1]上是減函數(shù).所以不正確是③. 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=ex-ax,其中a>0.

    (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

    (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

    【解析】解:.

    當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

    于是對一切恒成立,當(dāng)且僅當(dāng).       、

    當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

    故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

    綜上所述,的取值集合為.

    (Ⅱ)由題意知,

    ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),

    從而

    所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

    【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

     

    查看答案和解析>>

    已知

    (1)求的單調(diào)區(qū)間;

    (2)證明:當(dāng)時,恒成立;

    (3)任取兩個不相等的正數(shù),且,若存在使成立,證明:

    【解析】(1)g(x)=lnx+=        (1’)

    當(dāng)k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

    當(dāng)k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

    (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時,h(x),的變化情況如表

    x

    1

    (1,e)

    e

    (e,+)

     

    0

    +

    h(x)

    e-2

    0

    所以h(x)0, ∴f(x)2x-e                    (5’)

    設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時,=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時, 2x-ef(x)恒成立.

    (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

    ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

     

    查看答案和解析>>

    已知函數(shù)

    (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

    (Ⅱ)設(shè),若對任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

    【解析】第一問利用的定義域是     

    由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

    故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

    第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

    解: (I)的定義域是     ......1分

                  ............. 2分

    由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

    故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

    (II)若對任意不等式恒成立,

    問題等價于,                   .........5分

    由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個極小值是唯一的極值點(diǎn),

    故也是最小值點(diǎn),所以;            ............6分

    當(dāng)b<1時,;

    當(dāng)時,;

    當(dāng)b>2時,;             ............8分

    問題等價于 ........11分

    解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

     

    查看答案和解析>>

    設(shè)函數(shù)

    (1)當(dāng)時,求曲線處的切線方程;

    (2)當(dāng)時,求的極大值和極小值;

    (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

    【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

    解:(1)當(dāng)……2分

       

    為所求切線方程!4分

    (2)當(dāng)

    ………………6分

    遞減,在(3,+)遞增

    的極大值為…………8分

    (3)

    ①若上單調(diào)遞增!酀M足要求!10分

    ②若

    恒成立,

    恒成立,即a>0……………11分

    時,不合題意。綜上所述,實(shí)數(shù)的取值范圍是

     

    查看答案和解析>>

    已知,函數(shù)

    (1)當(dāng)時,求函數(shù)在點(diǎn)(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

    對a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時,  又    

    ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

    綜上所述   時,極大值為,無極小值

    時  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè),

    求導(dǎo),得

        

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實(shí)數(shù)的取值范圍是(

     

    查看答案和解析>>


    同步練習(xí)冊答案