亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    A.(1.+) B.(1.2) C.(1.1+) D.(2.1+) 查看更多

     

    題目列表(包括答案和解析)

    點(-1,2)關(guān)于直線 y=x-1的對稱點的坐標(biāo)是( 。

    查看答案和解析>>

     2. 點(1,2)與拋物線y2=4x的焦點的距離是                (     )

    A.1               B. 2               C. 3              D. 4

    查看答案和解析>>

    點(-1,2)關(guān)于直線 y=x-1的對稱點的坐標(biāo)是(  )
    A.(3,2)B.(-3,-2)C.(-3,2)D.(3,-2)

    查看答案和解析>>

    點(-1,2)關(guān)于直線 y=x-1的對稱點的坐標(biāo)是( )
    A.(3,2)
    B.(-3,-2)
    C.(-3,2)
    D.(3,-2)

    查看答案和解析>>

    點(-1,2)關(guān)于直線 y=x-1的對稱點的坐標(biāo)是( )
    A.(3,2)
    B.(-3,-2)
    C.(-3,2)
    D.(3,-2)

    查看答案和解析>>

     

    一、選擇題(每小題5分,共12小題,滿分60分)

    2,4,6

    二、填空題(每小題4分,共4小題,滿分16分)

    13.800    14.    15.625    16.②④

    三、解答題(本大題共6小題,滿分74分)

    17.解

       (Ⅰ)由題意知

    ……………………3分

    ……………………4分

    的夾角

    ……………………6分

    (Ⅱ)

    ……………………9分

    有最小值。

    的最小值是……………………12分

    18.解:

    (Ⅰ)設(shè)“一次取出3個球得4分”的事件記為A,它表示取出的球中有1個紅球和2個黑球的情況

    ……………………4分

    (Ⅱ)由題意,的可能取值為3、4、5、6。因為是有放回地取球,所以每次取到紅球的概率為……………………6分

    的分布列為

    3

    4

    5

    6

    P

    ……………………10分

    <code id="agkci"></code>
    <table id="agkci"></table>
  • 19.解:

    連接BD交AC于O,則BD⊥AC,

    連接A1O

    在△AA1O中,AA1=2,AO=1,

    ∠A1AO=60°

    ∴A1O2=AA12+AO2-2AA1?Aocos60°=3

    ∴AO2+A1O2=A12

    ∴A1O⊥AO,由于平面AA1C1C

    平面ABCD,

    所以A1O⊥底面ABCD

    ∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

    ……………………2分

    (Ⅰ)由于

    ∴BD⊥AA1……………………4分

      (Ⅱ)由于OB⊥平面AA1C1C

    ∴平面AA1C1C的法向量

    設(shè)⊥平面AA1D

    得到……………………6分

    所以二面角D―A1A―C的平面角的余弦值是……………………8分

    (Ⅲ)假設(shè)在直線CC1上存在點P,使BP//平面DA1C1

    設(shè)

    ……………………9分

    設(shè)

    設(shè)

    得到……………………10分

    又因為平面DA1C1

    ?

    即點P在C1C的延長線上且使C1C=CP……………………12分

    法二:在A1作A1O⊥AC于點O,由于平面AA1C­1C⊥平面

    ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

    又底面為菱形,所以AC⊥BD

          <td id="rjvax"><strong id="rjvax"></strong></td>
          <input id="agkci"></input>
        • ……………………4分

          (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

          ∴AO=AA1?cos60°=1

          所以O(shè)是AC的中點,由于底面ABCD為菱形,所以

          O也是BD中點

          由(Ⅰ)可知DO⊥平面AA1C

          過O作OE⊥AA1于E點,連接OE,則AA1⊥DE

          則∠DEO為二面角D―AA1―C的平面角

          ……………………6分

          在菱形ABCD中,AB=2,∠ABC=60°

          ∴AC=AB=BC=2

          ∴AO=1,DO=

          在Rt△AEO中,OE=OA?sin∠EAO=

          DE=

          ∴cos∠DEO=

          ∴二面角D―A1A―C的平面角的余弦值是……………………8分

          (Ⅲ)存在這樣的點P

          連接B1C,因為A1B1ABDC

          ∴四邊形A1B1CD為平行四邊形。

          ∴A1D//B1C

          在C1C的延長線上取點P,使C1C=CP,連接BP……………………10分

          因B­1­BCC1,……………………12分

          ∴BB1CP

          ∴四邊形BB1CP為平行四邊形

          則BP//B1C

          ∴BP//A1D

          ∴BP//平面DA1C1

          20.解:

          (Ⅰ)

          ……………………2分

          當(dāng)是增函數(shù)

          當(dāng)是減函數(shù)……………………4分

          ……………………6分

          (Ⅲ)(i)當(dāng)時,,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

          ……………………7分

          又當(dāng)時,所以的圖象在上有公共點,等價于…………8分

          解得…………………9分

          (ii)當(dāng)時,上是增函數(shù),

          所以原問題等價于

          ∴無解………………11分

           

           

          <input id="agkci"></input>