題目列表(包括答案和解析)
α |
β |
α |
β |
α |
β |
α |
β |
x |
y |
x+y |
請先閱讀:
設平面向量=(a1,a2),
=(b1,b2),且
與
的夾角為è,
因為
=|
||
|cosè,
所以
≤|
||
|.
即,
當且僅當è=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.
已知函數(shù)其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當時,
,
.結合表格和導數(shù)的知識判定單調(diào)性和極值,進而得到最值。
第二問中,∵,
,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,
,
.
當在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時,
,
.
(Ⅱ)∵,
,
∴原不等式等價于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價于
對
恒成立,
∵對于任意的時,
(當且僅當
時取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 2 1 |
a | 2 2 |
a | 2 3 |
b | 2 1 |
b | 2 2 |
b | 2 3 |
x |
2x-2 |
8-3x |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com