亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知曲線C:.C上的兩點(diǎn)A.的橫坐標(biāo)分別為2與..數(shù)列滿足(且.).設(shè)區(qū)間.當(dāng)時.曲線C上存在點(diǎn).使得點(diǎn)處的切線與平行. 查看更多

     

    題目列表(包括答案和解析)

    已知曲線C:(5-m)x2+(m-2)y2=8(m∈R),O為坐標(biāo)原點(diǎn).
    (Ⅰ)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓且離心率e>
    2
    2
    ,求m的取值范圍;
    (Ⅱ)設(shè)m=4,直線l過點(diǎn)(0,1)且與曲線C交于不同的兩點(diǎn)A、B,求當(dāng)△ABO的面積取得最大值時直線l的方程.

    查看答案和解析>>

    已知曲線C:
    x=2cosθ
    y=sinθ
    (θ為參數(shù)),若A、B是曲線C上關(guān)于坐標(biāo)軸不對稱的任意兩點(diǎn).
    (1)求AB的垂直平分線l在x軸上截距的取值范圍;
    (2)設(shè)過點(diǎn)M(1,0)的直線l是曲線C上A,B兩點(diǎn)連線的垂直平分線,求l的斜率k的取值范圍.

    查看答案和解析>>

    已知曲線C:數(shù)學(xué)公式(θ為參數(shù)),若A、B是曲線C上關(guān)于坐標(biāo)軸不對稱的任意兩點(diǎn).
    (1)求AB的垂直平分線l在x軸上截距的取值范圍;
    (2)設(shè)過點(diǎn)M(1,0)的直線l是曲線C上A,B兩點(diǎn)連線的垂直平分線,求l的斜率k的取值范圍.

    查看答案和解析>>

    已知曲線C:(5-m)x2+(m-2)y2=8(m∈R),O為坐標(biāo)原點(diǎn).
    (Ⅰ)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓且離心率e>
    2
    2
    ,求m的取值范圍;
    (Ⅱ)設(shè)m=4,直線l過點(diǎn)(0,1)且與曲線C交于不同的兩點(diǎn)A、B,求當(dāng)△ABO的面積取得最大值時直線l的方程.

    查看答案和解析>>

    已知曲線C:(5-m)x2+(m-2)y2=8(m∈R)。
    (1)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
    (2)設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G,求證:A,G,N三點(diǎn)共線。

    查看答案和解析>>

    一.             選擇題(每小題5分)

    題號

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    答案

    A

    B

    D

    C

    D

    B

    C

    B

    C

    A

     

    二.             填空題(每小題5分)

    11.       12。     13。-1       14。       15。

    三.             解答題

    ……………2分

    且2R=,由正弦定理得:

    化簡得:                       ……………4分

    由余弦定理:

    ……………11分

    所以,……………12分

    17.解:(I)記事件A=“該單位所派的選手都是男職工” ……………1分

    則P(A)=         ……………3分

    (II)記事件B=“該單位男職工、女職工選手參加比賽” ……………4分

    則P(B)=……………7分

    (III)設(shè)該單位至少有一名選手獲獎的概率為P,則

    ……………12分

    18.(解法一)(I)取AB的中點(diǎn)為Q,連接PQ,則,所以,為AC與BD所成角……………2分

          

    又CD=BD=1,,而PQ=1,DQ=1

    ……………4分

     

    (II)過D作,連接CR,,

    ……………6分

    ,

    ……………8分

    ……………9分

    (解法二)(I)如圖,以D為坐標(biāo)原點(diǎn),DB、AD、DC所在直線分別為x,y,z軸建立直角坐標(biāo)系。則A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)

     

    ,……2分

    所以,異面直線AC與BD所成角的余弦值為……………4分

    (II)面DAB的一個法向量為………5分

    設(shè)面ABC的一個法向量,則

    ,取,……………7分

    ……………8分

    …………9分

    (III)不存在。若存在S使得AC,則,與(I)矛盾。故不存在…12分

    19.解:(I)在區(qū)間上遞減,其導(dǎo)函數(shù)……………1分

    ……………4分

    是函數(shù)在區(qū)間上遞減的必要而不充分的條件……………5分

    (II)

          ……………6分

    當(dāng)a>0時,函數(shù)在()上遞增,在上遞減,在上遞增,故有

    ……………9分

    當(dāng)a〈0時,函數(shù)上遞增,只要

    ,則…………11分

    所以上遞增,又

    不能恒成立。

    故所求的a的取值范圍為……………12分

    20.解:(I)由條件,M到F(1,0)的距離等于到直線 x= -1的距離,所以,曲線C是以F為焦點(diǎn)、直線 x= -1為準(zhǔn)線的拋物線,其方程為……………3分

    (II)設(shè),代入得:……………5分

    由韋達(dá)定理

    ,

    ……………6分

    ,只要將A點(diǎn)坐標(biāo)中的換成,得……7分

     

    ……………8分

    所以,最小時,弦PQ、RS所在直線的方程為

    ……………9分

    (III),即A、T、B三點(diǎn)共線。

    是否存在一定點(diǎn)T,使得,即探求直線AB是否過定點(diǎn)。

    由(II)知,直線AB的方程為………10分

    ,直線AB過定點(diǎn)(3,0).……………12分

    故存在一定點(diǎn)T(3,0),使得……………13分

    21.解:(I)因為曲線在處的切線與平行

    ……………4分

       , 

    (III)。由(II)知:=

    ,從而……………11分

    ,

     


    同步練習(xí)冊答案