亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    小題4分.第小題5分) 查看更多

     

    題目列表(包括答案和解析)

    (本題16分,第(1)小題4分;第(2)小題6分;第(3)小題6分)

      已知數(shù)列滿足:,),數(shù)列),

    數(shù)列).

    (1)證明數(shù)列是等比數(shù)列;

    (2)求數(shù)列的通項(xiàng)公式;

    (3)是否存在數(shù)列的不同項(xiàng)),使之成為等差數(shù)列?若存在請求出這樣的

    不同項(xiàng));若不存在,請說明理由.

    查看答案和解析>>

    (本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)

    已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長為2的正方形。

    (1)求橢圓方程;

    (2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn)。證明:為定值;

    (3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由。

    查看答案和解析>>

    (本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

    在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。

    (1)求證:的關(guān)系為;

    (2)設(shè),定義在上的偶函數(shù),當(dāng)時(shí),且函數(shù)圖象關(guān)于直線對稱,求證:并求時(shí)的解析式;

    (3)在(2)的條件下,不等式上恒成立,求實(shí)數(shù)的取值范圍。

    查看答案和解析>>

    (本題滿分16分,第1小題4分,第2小題6分,第3小題6分)

    設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于P、Q兩點(diǎn).

    (1) 求該橢圓的標(biāo)準(zhǔn)方程;

    (2) 若,求直線l的方程;

    (3) 設(shè)直線l與圓Ox2+y2=8相交于M、N兩點(diǎn),令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

     

    查看答案和解析>>

    (本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)

    已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長為2的正方形。

    (1)求橢圓方程;

    (2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn)。證明:為定值;

    (3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由。

     

     

    查看答案和解析>>

     

    一、填空題 (每題5分)

    1)  2)  3)0  4)   5)   6)   7)②④  8) 9) 10)  11)7

    二、選擇題(每題5分)

    12、A  13、B   14、D   15、D

    三、解答題

    16、16、

    (1)因?yàn)?sub>,所以∠BCA(或其補(bǔ)角)即為異面直線所成角         -------(3分)

    ∠ABC=90°, AB=BC=1,所以,     -------(2分)

    即異面直線所成角大小為。      -------(1分)

    (2)直三棱柱ABC-A1B1C1中,,所以即為直線A1C與平面ABC所成角,所以。            -------(2分)

    中,AB=BC=1得到,中,得到,    -------(2分)

     

    所以               -------(2分)

     

    17、         -------(1分)

        =           -------(1分)

    =                   -------(1分)

    為其圖象對稱中心的橫坐標(biāo),即=0,         -------(1分)

    ,                    -------(1分)

    解得:         -------(1分)

     (2),        -------(2分)

    ,而,所以。                 -------(2分)

    ,,               -------(2分)

    所以                             ------(2分)

     

    18、,顧客得到的優(yōu)惠率是。         -------(5分)

    (2)、設(shè)商品的標(biāo)價(jià)為x元,則500≤x≤800                         ----- -(2分)

    消費(fèi)金額:  400≤0.8x≤640

    由題意可得:

    1       無解                                 ------(3分)

    或(2        得:625≤x≤750                    ------(3分)

     

    因此,當(dāng)顧客購買標(biāo)價(jià)在元內(nèi)的商品時(shí),可得到不小于的優(yōu)惠率。------(1分)

     

     

    19、(1)y=? =(2x-b)+(b+1)=2x+1                 -----(1分)

    軸的交點(diǎn),所以;           -----(1分)

    所以,即,                         -----(1分)

    因?yàn)?sub>上,所以,即    -----(1分)

    (2)設(shè) ),

    )         ----(1分)

    (A)當(dāng)時(shí),

                                                         ----(1分)

    ==,而,所以              ----(1分)

    (B)當(dāng)時(shí),   ----(1分)

    = =,                        ----(1分)

    ,所以                                       ----(1分)

    因此)                              ----(1分)

     

    (3)假設(shè),使得 ,

    (A)為奇數(shù)

    (一)為奇數(shù),則為偶數(shù)。則,。則,解得:矛盾。                   ----(1分)

    (二)為偶數(shù),則為奇數(shù)。則,。則,解得:是正偶數(shù))。           ----(1分)

    (B)為偶數(shù)

    (一)為奇數(shù),則為奇數(shù)。則,。則,解得:是正奇數(shù))。             ----(1分)

    (二)為偶數(shù),則為偶數(shù)。則,。則,解得:矛盾。           ----(1分)

    由此得:對于給定常數(shù)m(),這樣的總存在;當(dāng)是奇數(shù)時(shí),;當(dāng)是偶數(shù)時(shí),。                 ----(1分)

     

    20、(1)解法(A):點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線+4=0的距離小2,所以點(diǎn)P與點(diǎn)F(2,0)的距離與它到直線+2=0的距離相等。              ----(1分)

    由拋物線定義得:點(diǎn)在以為焦點(diǎn)直線+2=0為準(zhǔn)線的拋物線上,              ----(1分)

    拋物線方程為。                             ----(2分) 

    解法(B):設(shè)動(dòng)點(diǎn),則。當(dāng)時(shí),,化簡得:,顯然,而,此時(shí)曲線不存在。當(dāng)時(shí),,化簡得:

    (2),

    ,

    ,               ----(1分)

    ,

    ,即,,           ----(2分)

    直線為,所以                      ----(1分)

                             ----(1分)

    由(a)(b)得:直線恒過定點(diǎn)。                        ----(1分)

    1、(逆命題)如果直線,且與拋物線相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn)。求證:OA⊥OB    (評分:提出問題得1分,解答正確得1分)

    (若,求證:?=0,得分相同)

    2、(簡單推廣命題)如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),且OA⊥OB。求證:直線L過定點(diǎn)(2p,0)

    或:它的逆命題(評分:提出問題得2分,解答正確得1分)

    3、(類比)

    3.1(1)如果直線L與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是其右頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)

    3.1(2)如果直線L與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是其左頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)

    3.1(3)或它的逆命題

    3.2(1)如果直線L與雙曲線=1(a>0,b>0)相交于A、B兩點(diǎn),M是其右頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)(a≠b)

    3.2(2)如果直線L與雙曲線=1(a>0,b>0)相交于A、B兩點(diǎn),M是其左頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)(a≠b)

    3.2(3)或它的逆命題

    (評分:提出問題得3分,解答正確得3分)

    4、(再推廣)

    直角頂點(diǎn)在圓錐曲線上運(yùn)動(dòng)

    如:如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),P是拋物線上一定點(diǎn)(,),且PA⊥PB。求證:直線L過定點(diǎn)(+2p,-)

    (評分:提出問題得4分,解答正確得3分)

    5、(再推廣)

    如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),P是拋物線上一定點(diǎn)(,),PA與PB的斜率乘積是常數(shù)m。求證:直線L過定點(diǎn)(,-)

    (評分:提出問題得5分,解答正確得4分)

     

    ?為常數(shù)

    頂點(diǎn)在圓錐曲線上運(yùn)動(dòng)并把直角改為一般定角或OA與OB的斜率乘積是常數(shù)或?為常數(shù)

     

     

     

     


    同步練習(xí)冊答案