亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    C. D. 查看更多

     

    題目列表(包括答案和解析)

    C.選修4-4:坐標系與參數(shù)方程
    在極坐標系下,已知圓O:和直線
    (1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
    D.選修4-5:不等式證明選講
    對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

    查看答案和解析>>

    C.選修4-4:坐標系與參數(shù)方程
    在極坐標系下,已知圓O:和直線,
    (1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
    D.選修4-5:不等式證明選講
    對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

    查看答案和解析>>

    C

    [解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

    查看答案和解析>>

    定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )

    A B C D

     

    查看答案和解析>>

    .過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

    A.16條          B. 17條        C. 32條            D. 34條

     

    查看答案和解析>>

    一、選擇題:本大題共12小題,每小題5分,共60分.

    1―5CADAD   6―10BACBC   11―12BD

    二、填空題:本大題共4個小題,每小題4分,共16分.

    13.  14.  15. 16.③④

    三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

    17.(本小題滿分12分)

           解:(I)由題意知……………………1分

          

           ………………………………………………………6分

          

           ………………………………………………8分

       (II)

           …………………………10分

          

           最大,其最大值為3.………………12分

    18.(本小題滿分12分)

           解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系(如圖).

          <td id="rjvax"><strong id="rjvax"></strong></td>
        •        P(0,0,a),F,).………………2分

             (I)

                 …………………………………………4分

          文本框:     (II)設(shè)平面DEF的法向量為

                 得

                 取x=1,則y=-2,z=1.

                 ………………………………………………6分

                

                 設(shè)DB與平面DEF所成角為……………………………………8分

             (III)假設(shè)存在點G滿足題意

                 因為

                

                 ∴存在點G,其坐標為(,0,0),即G點為AD的中點.……………………12分

          19.(本小題滿分12分)

                 解:(I)ξ的所有可能取值為0,1,2,依題意得:

                 …………3分

                 ∴ξ的分布列為

                

          ξ

          0

          1

          2

          P

                 ∴Eξ=0×+1×+2×=1.…………………………………………4分

             (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

                 ∴所求概率為…………………………………8分

             (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

                 ………………………………10分

                 ……………12分

          20.(本小題滿分12分)

                 解:(I)由題意知

                 是等差數(shù)列.…………………………………………2分

                

                 ………………………………5分

             (II)由題設(shè)知

                

                 是等差數(shù)列.…………………………………………………………8分

                

                 ………………………………10分

                 ∴當n=1時,

                 當

                 經(jīng)驗證n=1時也適合上式. …………………………12分

          21.(本小題滿分12分)

                 解:(I)令

                 則

                 是單調(diào)遞減函數(shù).……………………………………2分

                 又取

                 在其定義域上有唯一實根.……………………………4分

             (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

                

                 滿足條件②.故是集合M中的元素.……………………………7分

             (III)不妨設(shè)在其定義域上是增函數(shù).

                 ………………………………………………………………8分

                 是其定義域上的減函數(shù).

                 .………………10分

                

                 …………………………………………12分

          22.(本小題滿分14分)

                 解:(I)設(shè)

                 由

                 ………………………………………………2分

                 又

                

                 同理,由………………………………4分

                 …………6分

             (II)方法一:當m=0時,A(2,2),B(2,-),Dn,2),En,-2).

                 ∵ABED為矩形,∴直線AE、BD的交點N的坐標為(………………8分

                 當

                

                 同理,對、進行類似計算也得(*)式.………………………………12分

                 即n=-2時,N為定點(0,0).

                 反之,當N為定點,則由(*)式等于0,得n=-2.…………………………14分

                 方法二:首先n=-2時,則D(-2,y1),A

                   ①

                   ②…………………………………………8分

                 ①-②得

                

                 …………………………………………………………10分

                 反之,若N為定點N(0,0),設(shè)此時

                 則

                 由DN、B三點共線,   ③

                 同理E、N、A三點共線, ④………………12分

                 ③+④得

                 即-16m+8m4m=0,m(n+2)=0.

                 故對任意的m都有n=-2.……………………………………………………14分

           

           

           

          <i id="r0xkr"><ins id="r0xkr"></ins></i>