題目列表(包括答案和解析)
設M是由滿足下列條件的函數構成的集合:“①方程
有實數根;②函數
的導數
滿足
.”
(1)判斷函數是否是集合M中的元素,并說明理由;
(2)集合M中的元素具有下面的性質:若
的定義域為D,則對于任意
,都存在
,使得等式
成立”,試用這一性質證明:方程
只有一個實數根;
(3)設是方程
的實數根,求證:對于
定義域中任意的
,當
,且
時,
.
設M是由滿足下列條件的函數構成的集合:“①方程
有實數根;②函數
的導數
滿足
.”
(I)判斷函數是否是集合M中的元素,并說明理由;
(II)集合M中的元素具有下面的性質:若
的定義域為D,則對于任意
[m,n]D,都存在
[m,n],使得等式
成立”,
試用這一性質證明:方程只有一個實數根;
(III)設是方程
的實數根,求證:對于
定義域中任意的
.
設M是由滿足下列條件的函數構成的集合:①方程,
有實數根②函數
的導數
滿足
.
(I)
若函數為集合M中的任意一個元素,證明:方程
只有一個實數根;
(II)
判斷函數是否是集合M中的元素,并說明理由;
(III) 設函數為集合M中的任意一個元素,對于定義域中任意
,當
,且
時,證明:
.
設M是由滿足下列條件的函數構成的集合:“①方程
有實數
根;②函數”[來源:學+科+網Z+X+X+K]
(I)判斷函數是否是集合M中的元素,并說明理由;
(II)集合M中的元素具有下面的性質:若
的定義域為D,則對于任意
成立。試用這一性
質證明:方程只有一個實數根;
(III)對于M中的函數 的實數根,求證:對于
定義
域中任意的當
且
一、選擇題:
l 題號
l
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
l
1、解析:,N=
,
即.答案:
.
2、解析:由題意得,
又.
答案:.
3、解析:程序的運行結果是.答案:
.
4、解析:與直線垂直的切線
的斜率必為4,而
,所以,切點為
.切線為
,即
,答案:
.
5、解析:由一元二次方程有實根的條件,而
,由幾何概率得有實根的概率為
.答案:
.
6、解析:如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以
正確;
如果一個平面經過了另一個平面的一條垂線,則這兩個平面平行,所以也正確;
只有選項錯誤.答案:
.
7、解析:由題意,得,答案:
.
8、解析:的圖象先向左平移
,橫坐標變?yōu)樵瓉淼?sub>
倍
.答案:
.
二、填空題:
l 題號
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
9、解析:若,則
,解得
.
10、解析:由題意.
11、解析:
12、解析:令,則
,令
,則
,
令,則
,令
,則
,
令,則
,令
,則
,
…,所以.
13、解析::
;則圓心坐標為
.
:
由點到直線的距離公式得圓心到直線的距離為
,所以要求的最短距離為
.
14、解析:由柯西不等式,答案:
.
15、解析:顯然與
為相似三角形,又
,所以
的面積等于9cm
.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16、解: (1), ………………………
2分
∴,…………………………………………………
4分
解得.………………………………………………………………… 6分
(2)由,得:
,
……………………… 8分
∴ …………………………………
10分
∴.……………………………………………………………
12分
17、解:(1)… 2分
則的最小正周期
, …………………………………4分
且當時
單調遞增.
即為
的單調遞增區(qū)間(寫成開區(qū)間不扣分).……6分
(2)當時
,當
,即
時
.
所以. …………………………9分
為
的對稱軸.
…………………12分
18、解:
(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,
記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分
∵“兩球恰好顏色不同”共種可能,…………………………5分
∴.
……………………………………………………7分
解法二:“有放回摸取”可看作獨立重復實驗, …………………………2分
∵每次摸出一球得白球的概率為.………………………………5分
∴“有放回摸兩次,顏色不同”的概率為.
…………………7分
(2)設摸得白球的個數為,依題意得:
,
,
.
… 10分
∴,……………………………………12分
.……………………14分
19、(1)證明:
連結,
與
交于點
,連結
.………………………1分
是菱形, ∴
是
的中點. ………………………………………2分
點
為
的中點, ∴
. …………………………………3分
平面
平面
, ∴
平面
. ……………… 6分
(2)解法一:
平面
,
平面
,∴
.
,∴
. …………………………… 7分
是菱形, ∴
.
,
∴平面
.
…………………………………………………………8分
作,垂足為
,連接
,則
,
所以為二面角
的平面角. ………………………………… 10分
,∴
,
.
在Rt△中,
=
,……………………………
12分
∴.…………………………… 13分
∴二面角的正切值是
. ………………………… 14分
解法二:如圖,以點為坐標原點,線段
的垂直平分線所在直線為
軸,
所在直線為
軸,
所在直線為
軸,建立空間直角坐標系,令
,……………2分
則,
,
.
∴
. ……………4分
設平面的一個法向量為
,
由,得
,
令,則
,∴
. …………………7分
平面
,
平面
,
∴. ………………………………… 8分
,∴
.
是菱形,∴
.
,∴
平面
.…………………………… 9分
∴是平面
的一個法向量,
.…………………
10分
∴,
∴, …………………… 12分
∴.……………………………………
13分
∴二面角的正切值是
. ……………………… 14分
20、解:圓的方程為
,則其直徑長
,圓心為
,設
的方程為
,即
,代入拋物線方程得:
,設
,
有
, ………………………………2分
則. ……………………4分
故 …6分
, ………… 7分
因此.
………………………………… 8分
據等差,, …………… 10分
所以,即
,
,…………… 12分
即:方程為
或
. …………………14分
21、解:
(1)因為,
…………………………2分
所以,滿足條件
. …………………3分
又因為當時,
,所以方程
有實數根
.
所以函數是集合M中的元素. …………………………4分
(2)假設方程存在兩個實數根
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com