亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    , 12. , 13. , 查看更多

     

    題目列表(包括答案和解析)

    、某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子的發(fā)芽數(shù),如下


     

    日期

    12月1日

    12月2日

    12月3日

    12月4日

    12月5日

    溫差

    10

    11

    13

    12

    8

    發(fā)芽數(shù)

    23

    25

    30

    26

    16

    該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取點(diǎn)2組數(shù)據(jù)進(jìn)行檢驗(yàn)

    (1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求關(guān)于的線性回歸方程;

    (2)若線性回歸方程得到的估計(jì)數(shù)據(jù)與所選點(diǎn)檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得到的線性回歸方程是否可靠?

    參考公式:

     

    查看答案和解析>>

    甲、乙兩名射手各自獨(dú)立地射擊同一目標(biāo)2次,甲每次擊中目標(biāo)的概率為
    1
    2
    ,乙每次擊中目標(biāo)的概率為
    1
    3

    (I)求目標(biāo)不被擊中的概率;
    (II)求乙比甲多擊中目標(biāo)1次的概率.

    查看答案和解析>>

    甲、乙、丙3人投籃,投進(jìn)的概率分別是
    1
    3
    ,
    2
    5
    ,
    1
    2

    (Ⅰ)現(xiàn)3人各投籃1次,求3人都沒(méi)有投進(jìn)的概率;
    (Ⅱ)用ξ表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量ξ的概率分布及數(shù)學(xué)期望Eξ.

    查看答案和解析>>

    甲、乙、丙3人投籃,投進(jìn)的概率分別是
    2
    5
    1
    2
    ,
    1
    3
    .現(xiàn)3人各投籃1次,求:
    (Ⅰ)3人都投進(jìn)的概率;
    (Ⅱ)3人中恰有2人投進(jìn)的概率.

    查看答案和解析>>

    甲、乙兩人練習(xí)射擊,命中目標(biāo)的概率分別為
    1
    2
    1
    3
    ,甲、乙兩人各射擊一次,有下列說(shuō)法:
    ①目標(biāo)恰好被命中一次的概率為
    1
    2
    +
    1
    3
    ;
    ②目標(biāo)恰好被命中兩次的概率為
    1
    2
    ×
    1
    3
    ; 
    ③目標(biāo)被命中的概率為
    1
    2
    ×
    2
    3
    +
    1
    2
    ×
    1
    3
    ;  
    ④目標(biāo)被命中的概率為1-
    1
    2
    ×
    2
    3

    以上說(shuō)法正確的序號(hào)依次是(  )

    查看答案和解析>>

    、選擇題:本大題共10小題,每小題5分,共50分.

                 CABCA,BCDDC

    二、填空題:本大題共5小題,每小題5分 ,共25分,

    11. 12; 12. ; 13. 8; 14. x-2y-z+3=0;  15. ②④.

    、解答題:本大題共6小題,共75分. 解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

    16.解:(Ⅰ) 由已知  ,   ∴    ,

    又   ΔABC是銳角三角形,  ∴     ………………………………6分

    (Ⅱ)

     

               ………………………………12分

    17.解法一:(Ⅰ)∵,

     ∴ ,   ……………………3分

    ∵ 

    ∴                  ……………………6分

    (Ⅱ)取的中點(diǎn),則,連結(jié),

    ,∴,從而

    ,交的延長(zhǎng)線于,連結(jié),則由三垂線定理知, AC⊥MH,

    從而為二面角的平面角            …………………8分

    直線與直線所成的角為,∴   …………………9分

    中,由余弦定理得

        在中,

    中,

    中,

    故二面角的平面角大小為       …………………12分

    解法二:(Ⅰ)同解法一

    (Ⅱ)在平面內(nèi),過(guò),建立空間直角坐標(biāo)系(如圖)

    由題意有,設(shè)

    ………5分

    由直線與直線所成的角為,得

    ,即,解得………7分

    ,設(shè)平面的一個(gè)法向量為

    ,取,得         ……………9分

    又  平面的法向量取為                   ……………10分

    設(shè)所成的角為,則

    故二面角的平面角大小為            ……………12分

    18. 解:(I)記“幸運(yùn)觀眾獲得獎(jiǎng)金5000元”為事件M,即前兩個(gè)問(wèn)題選擇回答A、C且答對(duì),最后在回答問(wèn)題B時(shí)答錯(cuò)了.

            故   幸運(yùn)觀眾獲得獎(jiǎng)金5000元的概率為          ………………6分

    (II) 設(shè)幸運(yùn)觀眾按A→B→C順序回答問(wèn)題所得獎(jiǎng)金數(shù)為隨機(jī)變量ξ,則ξ的取值可以為0元、1000元、3000元和7000元,其分布列為

    0

    1000

    3000

    7000

    P

    ∴  元. ………………9分

    設(shè)幸運(yùn)觀眾按C→B→A順序回答問(wèn)題所得獎(jiǎng)金數(shù)為隨機(jī)變量η,則η的取值可以為0元、4000元、6000元和7000元,其分布列為

    η

    0

    4000

    6000

    7000

    P

    元. ……11分

    故   乙觀眾的選擇所獲獎(jiǎng)金期望較大.                   ………………12分

    19.解:(1)∵     ……………………2分

    由已知對(duì)恒成立,即對(duì)恒成立

    又         ∴ 為所求        …………………………5分

         (2)取, ∵ ,  ∴ 

    由已知上是增函數(shù),即,

    也就是   即                …………8分

    另一方面,設(shè)函數(shù),則

    ∴   上是增函數(shù),又

    ∴   當(dāng)時(shí),

    ∴    ,即 

    綜上所述,………………………………………………13分

    20.解:(Ⅰ) 由題意可知,平面區(qū)域如圖陰影所示. …3分

    設(shè)動(dòng)點(diǎn)為,則

    ,即

    ,x-y<0,即x2y2<0.

    所以  y2x2=4(y>0),即為曲線的方程  …………6分

    (Ⅱ)設(shè),則以線段為直徑的圓的圓心為.

    因?yàn)橐跃段為直徑的圓軸相切,所以半徑

    即                  ………………………8分

    因?yàn)橹本AB過(guò)點(diǎn),當(dāng)AB ^ x軸時(shí),不合題意.

    所以設(shè)直線AB的方程為    y=k(x-2).

    代入雙曲線方程y2x2=4 (y>0)得:      (k2-1)x2-4k2x+(8k2-4)=0.

    因?yàn)橹本l與雙曲線交于A,B兩點(diǎn),所以k≠±1.于是

    x1x2=,x1x2=.

    ∴   |AB|=

    ∴  

    化簡(jiǎn)得:k4+2k2-1=0                  ……………………………11分

    解得: k2=-1  (k2=--1不合題意,舍去).

    由△=(4k2)2-4(k2-1)(8k2-4)=3k2-1>0,又由于y>0,所以-1<k<- .

    所以直線l存在,其斜率為 k=-.        …………………13分

    21. 解:(1) 因?yàn)? ,所以,

    于是: , 即是以2為公比的等比數(shù)列.

          <td id="rjvax"><strong id="rjvax"></strong></td>
        • <td id="ikzst"></td>
        • <td id="ikzst"><option id="ikzst"></option></td>
        • <dfn id="ikzst"><strong id="ikzst"></strong></dfn>
        • 1+1

          因?yàn)?nbsp;   

          由題設(shè)知: ,解得:,

          又因?yàn)?sub>,所以,于是. ……3分

          得:

          因?yàn)?sub>是正整數(shù)列,  所以  .

          于是是等比數(shù)列.  又  , 所以  ,…………………5分

          (2) 由 得:

          得:         …………………6分

          設(shè)                    ①

                  ②

          當(dāng)時(shí),①式減去②式, 得

          于是,

          這時(shí)數(shù)列的前項(xiàng)和  .……………8分

          當(dāng)時(shí),.這時(shí)數(shù)列的前項(xiàng)和.…………9分

          (3) 證明:通過(guò)分析,推測(cè)數(shù)列的第一項(xiàng)最大,下面證明:

                              ③

          ,要使③式成立,只要 ,

          因?yàn)?nbsp;

          所以③式成立.

          因此,存在,使得對(duì)任意均成立.   ……………13分