題目列表(包括答案和解析)
(本小題滿分12分)[來源:學科網(wǎng)ZXXK]
某校高三文科分為四個班.高三數(shù)學調(diào)研測試后,
隨機地在各班抽取部分學生進行測試成績統(tǒng)計,
各班被抽取的學生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人。
抽取出來的所有學生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖5所示,
其中120~130(包括120分但不包括130分)的頻率為0.05,此 0
分數(shù)段的人數(shù)為5人
(1)問各班被抽取的學生人數(shù)各為多少人?
(2)在抽取的所有學生中,任取一名學生, 求分數(shù)不。本小題滿分12分)
(本小題滿分12分)
從某校高三年級800名男生中隨機抽取50名學生測量其身高,據(jù)測量被測學生的身高全部在155cm到195cm之間.將測量結(jié)果按如下方式分成8組:第一組[155,160),第二組[160,165),……,第八組[190,195],如下圖是按上述分組得到的頻率分布直方圖的一部分.已知:第1組與第8組的人數(shù)相同,第6組、第7組和第8組的人數(shù)依次成等差數(shù)列.
⑴求下列頻率分布表中所標字母的值,并補充完成頻率分布直方圖;
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
… | … | … | … |
[180,185) | ![]() | ![]() | z |
[185,190) | m | n | p |
… | … | … | … |
(本小題滿分12分)
A、B兩個試驗方案在某科學試驗中成功的概率相同,已知A、B兩個方案至少一個成功的概率為0.36,
(1)求兩個方案均獲成功的概率;
(2)設試驗成功的方案的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望
(本小題滿分12分)
某項計算機考試按科目A、科目B依次進行,只有大拿感科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只允許有一次補考機會,兩個科目均合格方快獲得證書,現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為
,假設各次考試合格與否均互不影響.
(1)求他不需要補考就可獲得證書的概率;
(2)在這次考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數(shù)為,求隨即變量
的分布列和數(shù)學期望.
(本小題滿分12分)
A、B兩個試驗方案在某科學試驗中成功的概率相同,已知A、B兩個方案至少一個成功的概率為0.36,
(1)求兩個方案均獲成功的概率;
(2)設試驗成功的方案的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望
一、選擇題:1-5 :A D B D C 6-10: C C C
D B 11-12: B B學科網(wǎng)
二、填空題: 13, 14. 3 15.
16. (1,2),(3,402)
學科網(wǎng)
三、解答題
三、解答題(本大題共6小題,共70分)
17.(12分)
解:(1)∥
2分
4分
又為銳角
6分
(Ⅱ) 由
得
又代入上式得:
(當且僅當
時等號成立。) 9分
(當且僅當
時等號成立。) 11分
的面積
的取值范圍為.
12分
18.(12分)
解法一:
(Ⅰ)取中點
,連結(jié)
.
,
.
,
.
,
平面
.
平面
,
.
(Ⅱ),
,
.
又,
.
又
,即
,且
,
平面
.
取中點
.連結(jié)
.
,
.
是
在平面
內(nèi)的射影,
.
是二面角
的平面角.
在中,
,
,
,
.
二面角
的余弦值為
(Ⅲ)由(Ⅰ)知平面
,
平面
平面
.
過作
,垂足為
.
平面
平面
,
平面
.
的長即為點
到平面
的距離.
由(Ⅰ)知,又
,且
,
平面
.
平面
,
.
在中,
,
,
.
.
點
到平面
的距離為
.
解法二:
(Ⅰ),
,
.
又,
.
,
平面
.
平面
,
.
(Ⅱ)如圖,以為原點建立空間直角坐標系
.
則.設
.
,
,
.
取中點
,連結(jié)
.
,
,
,
.
是二面角
的平面角.
,
,
,
.
二面角
的余弦值為
.
(Ⅲ),
在平面
內(nèi)的射影為正
的中心
,且
的長為點
到平面
的距離.
如(Ⅱ)建立空間直角坐標系.
,
點
的坐標為
.
.
點
到平面
的距離為
.
19.(12分)
解:(Ⅰ)由條件得,又
時,
,
故數(shù)列構(gòu)成首項為1,公式為
的等比數(shù)列.從而
,即
.
(Ⅱ)由得
,
,
兩式相減得 : ,
所以
.
(Ⅲ)由得
所以.
20.(12分)
解:(Ⅰ)①當0<t10時,V(t)=(-t2+14t-40)
化簡得t2-14t+40>0,
解得t<4,或t>10,又0<t10,故0<t<4.
②當10<t12時,V(t)=4(t-10)(3t-41)+50<50,
化簡得(t-10)(3t-41)<0,
解得10<t<,又10<t
12,故 10<t
12.
綜合得0<t<4,或10<t12,
故知枯水期為1月,2月, 3月,4月,11月,12月共6個月.
(Ⅱ)由(Ⅰ)知:V(t)的最大值只能在(4,10)內(nèi)達到.
由V′(t)=
令V′(t)=0,解得t=8(t=-2舍去).
當t變化時,V′(t) 與V (t)的變化情況如下表:
t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)
極大值
由上表,V(t)在t=8時取得最大值V(8)=8e2+50-108.32(億立方米).
故知一年內(nèi)該水庫的最大蓄水量是108.32億立方米
21.(12分)
解:(Ⅰ)由題意得直線的方程為
.
因為四邊形為菱形,所以
.
于是可設直線的方程為
.
由得
.
因為在橢圓上,
所以,解得
.
設兩點坐標分別為
,
則,
,
,
.
所以.
所以的中點坐標為
.
由四邊形為菱形可知,點
在直線
上,
所以,解得
.
所以直線的方程為
,即
.
(Ⅱ)因為四邊形為菱形,且
,
所以.
所以菱形的面積
.
由(Ⅰ)可得,
所以.
所以當時,菱形
的面積取得最大值
.
22.(10分)解:從⊙O外一點P向圓引兩條切線PA、PB和割線PCD。從A點作弦AE平行于CD,連結(jié)BE交CD于F。求證:BE平分CD.
【分析1】構(gòu)造兩個全等△.
連結(jié)ED、AC、AF。
CF=DF←△ACF≌△EDF←
←
←∠PAB=∠AEB=∠PFB
【分析2】利用圓中的等量關(guān)系。連結(jié)OF、OP、OB.
←∠PFB=∠POB←
←
23.(10分)解:(Ⅰ)是圓,
是直線.
的普通方程為
,圓心
,半徑
.
的普通方程為
.
因為圓心到直線
的距離為
,所以
與
只有一個公共點.
(Ⅱ)壓縮后的參數(shù)方程分別為
:
(
為參數(shù));
:
(t為參數(shù)).
化為普通方程為::
,
:
,
聯(lián)立消元得,其判別式
,
所以壓縮后的直線與橢圓
仍然只有一個公共點,和
與
公共點個數(shù)相同.
24.(10分)解:
(Ⅰ)
圖像如下:
(Ⅱ)不等式
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com