題目列表(包括答案和解析)
1 |
2 |
1 |
2 |
|
|
|
質(zhì)量為m1的登月艙連接在質(zhì)量為m2的軌道艙上一起繞月球作圓周運動,其軌道半徑是月球半徑Rm的3倍。某一時刻,登月艙與軌道艙分離,軌道艙仍在原軌軌道上運動,登月艙作一瞬間減速后,沿圖示橢圓軌道登上月球表面,在月球表面逗留一段時間后,快速啟動發(fā)動機,使登月艙具有一合適的初速度,使之沿原橢圓軌道回到脫離點與軌道艙實現(xiàn)對接。由開普勒第三定律可知,以太陽為焦點作橢圓軌道運行的所有行星,其橢圓軌道半長軸的立方與周期的平方之比是一個常量。另,設(shè)橢圓的半長軸為a,行星質(zhì)量為m,太陽質(zhì)量為M0,則行星的總能量為。行星在橢圓軌道上運行時,行星的機械能守恒,當(dāng)它距太陽的距離為r時,它的引力勢能為
。G為引力恒量。設(shè)月球質(zhì)量為M,不計地球及其它天體對登月艙和軌道艙的作用力。求:
(1)登月艙減速時,發(fā)動機做了多少功?
(2)登月艙在月球表面可逗留多長時間?
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com