亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    5.已知雙曲線以坐標(biāo)原點(diǎn)為頂點(diǎn).以曲線的頂點(diǎn)為焦點(diǎn)的拋物線與曲線的漸近線的一個(gè)交點(diǎn)坐標(biāo)為(4.4).則雙曲線的離心率為 查看更多

     

    題目列表(包括答案和解析)

    已知雙曲線以坐標(biāo)原點(diǎn)為頂點(diǎn),以曲線的頂點(diǎn)為焦點(diǎn)的拋物線與曲線漸近線的一個(gè)交點(diǎn)坐標(biāo)為(4,4),則雙曲線的離心率為                

    A.               .              C.               D.

    查看答案和解析>>

    已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(
    2
    ,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A′與A點(diǎn)關(guān)于直線y=x對(duì)稱.
    (1)求雙曲線C的方程;
    (2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為
    2
    ,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).

    查看答案和解析>>

    已知雙曲線方程為
    x2
    a2
    -
    y2
    b2
    =1(a>0,b>0)
    ,橢圓C以該雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn).
    (1)當(dāng)a=
    3
    ,b=1時(shí),求橢圓C的方程;
    (2)在(1)的條件下,直線l:y=kx+
    1
    2
    與y軸交于點(diǎn)P,與橢圓交與A,B兩點(diǎn),若O為坐標(biāo)原點(diǎn),△AOP與△BOP面積之比為2:1,求直線l的方程;
    (3)若a=1,橢圓C與直線l':y=x+5有公共點(diǎn),求該橢圓的長(zhǎng)軸長(zhǎng)的最小值.

    查看答案和解析>>

    已知雙曲線的兩條漸近線經(jīng)過坐標(biāo)原點(diǎn),且與以A(
    2
    ,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A'與點(diǎn)A關(guān)于直線y=x對(duì)稱.
    (1)求雙曲線的方程;
    (2)是否存在過A點(diǎn)的一條直線交雙曲線于M、N兩點(diǎn),且線段MN被直線x=-1平分.如果存在,求出直線的方程;如果不存在,說明理由.

    查看答案和解析>>

    已知雙曲線C1以點(diǎn)A(0,1)為頂點(diǎn),且過點(diǎn)B(-
    3
    ,2)

    (1)求雙曲線C1的標(biāo)準(zhǔn)方程;
    (2)求離心率為
    2
    2
    ,且以雙曲線C1的焦距為短軸長(zhǎng)的橢圓的標(biāo)準(zhǔn)方程;
    (3)已知點(diǎn)P在以點(diǎn)A為焦點(diǎn)、坐標(biāo)原點(diǎn)為頂點(diǎn)的拋物線C2上運(yùn)動(dòng),點(diǎn)M的坐標(biāo)為(2,3),求PM+PA的最小值及此時(shí)點(diǎn)P的坐標(biāo).

    查看答案和解析>>

    一、 C B C B B AC D A B    C D

    二、13.           14.              15.         16.3

    三、17(Ⅰ)

                = =

    得,

    .

    故函數(shù)的零點(diǎn)為.         ……………………………………6分

    (Ⅱ)由

    .又

           

             , 

                       ……………………………………12分

    18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

    (Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

    又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

    ∴  AD⊥PD                                   ……………………………4分

     

     (Ⅱ)  CM∥平面PDA  理由如下:

    取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                     …………8分

     (Ⅲ)            

                                                                ……………12分

    19. (Ⅰ)九年級(jí)(1)班應(yīng)抽取學(xué)生10名; ………………………2分

    (Ⅱ)通過計(jì)算可得九(1)班抽取學(xué)生的平均成績(jī)?yōu)?6.5,九(2)班抽取學(xué)生的平均成績(jī)?yōu)?7.2.由此可以估計(jì)九(1)班學(xué)生的平均成績(jī)?yōu)?6.5, 九(2)班學(xué)生的平均成績(jī)?yōu)?nbsp;     17.2                                                     ………………………6分

    (Ⅲ)基本事件總數(shù)為15,滿足條件的事件數(shù)為9 ,故所求事件的概率為

    ………………………………12分

    20. (Ⅰ)證明 設(shè)

    相減得  

    注意到  

    有        

    即                           …………………………………………5分

    (Ⅱ)①設(shè)

    由垂徑定理,

    即       

    化簡(jiǎn)得  

    當(dāng)軸平行時(shí),的坐標(biāo)也滿足方程.

    故所求的中點(diǎn)的軌跡的方程為;

        …………………………………………8分

    ②      假設(shè)過點(diǎn)P作直線與有心圓錐曲線交于兩點(diǎn),且P為的中點(diǎn),則

             

    由于 

    直線,即,代入曲線的方程得

                 

                

    故這樣的直線不存在.                      ……………………………………12分

    21.(Ⅰ)函數(shù)的定義域?yàn)?sub>

    由題意易知,   得    ;

                                 當(dāng)時(shí),當(dāng)時(shí),

    故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   …………………………6分

       (Ⅱ)

    ①     當(dāng)時(shí),遞減,無極值.

    ②     當(dāng)時(shí),由

    當(dāng)時(shí),當(dāng)時(shí),

    時(shí),函數(shù)的極大值為

    ;

    函數(shù)無極小值.                                 …………………………13分

    22.(Ⅰ)            

                              …………………………………………4分

    (Ⅱ) ,

              ……………………………8分

     (Ⅲ)假設(shè)

    ,可求

    故存在,使恒成立.

                                       ……………………………………13分

     

     

     

     


    同步練習(xí)冊(cè)答案