亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    .得:.即 故至少應(yīng)抽取8件產(chǎn)品才能滿足題意. --------12分 查看更多

     

    題目列表(包括答案和解析)

    如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

    (Ⅰ)證明PC⊥AD;

    (Ⅱ)求二面角A-PC-D的正弦值;

    (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

     

    【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

    (1)證明:易得,于是,所以

    (2) ,設(shè)平面PCD的法向量,

    ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

    所以二面角A-PC-D的正弦值為.

    (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

    ,故 

    所以,,解得,即.

    解法二:(1)證明:由,可得,又由,,故.又,所以.

    (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

    因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

    因此所以二面角的正弦值為.

    (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

    中,由,,

    可得.由余弦定理,,

    所以.

     

    查看答案和解析>>

    已知數(shù)列的前項(xiàng)和為,且 (N*),其中

    (Ⅰ) 求的通項(xiàng)公式;

    (Ⅱ) 設(shè) (N*).

    ①證明: ;

    ② 求證:.

    【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

    所以利用放縮法,從此得到結(jié)論。

    解:(Ⅰ)當(dāng)時(shí),由.  ……2分

    若存在,

    從而有,與矛盾,所以.

    從而由.  ……6分

     (Ⅱ)①證明:

    證法一:∵

     

    .…………10分

    證法二:,下同證法一.           ……10分

    證法三:(利用對(duì)偶式)設(shè),,

    .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                        ………10分

    證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

       ②假設(shè)時(shí),命題成立,即,

       則當(dāng)時(shí),

        即

    故當(dāng)時(shí),命題成立.

    綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

    ②由于,

    所以,

    從而.

    也即

     

    查看答案和解析>>

    C

    [解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

    查看答案和解析>>

    已知曲線C:(m∈R)

    (1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

    (2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

    【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

    (2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為

    ,得

    因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

    設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

    直線BM的方程為,點(diǎn)G的坐標(biāo)為

    因?yàn)橹本AN和直線AG的斜率分別為

    所以

    ,故A,G,N三點(diǎn)共線。

     

    查看答案和解析>>

    已知函數(shù)=.

    (Ⅰ)當(dāng)時(shí),求不等式 ≥3的解集;

    (Ⅱ) 若的解集包含,求的取值范圍.

    【命題意圖】本題主要考查含絕對(duì)值不等式的解法,是簡(jiǎn)單題.

    【解析】(Ⅰ)當(dāng)時(shí),=,

    當(dāng)≤2時(shí),由≥3得,解得≤1;

    當(dāng)2<<3時(shí),≥3,無解;

    當(dāng)≥3時(shí),由≥3得≥3,解得≥8,

    ≥3的解集為{|≤1或≥8};

    (Ⅱ)

    當(dāng)∈[1,2]時(shí),==2,

    ,有條件得,即

    故滿足條件的的取值范圍為[-3,0]

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案