亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    .解得>1 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=alnx-x2+1.

    (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

    (2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

    【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

    由已知得a-2=4,2-a=b,所以a=6,b=-4.

    第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

    不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

    ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1

    即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導數(shù)的知識來解得。

    (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

    由已知得a-2=4,2-a=b,所以a=6,b=-4.

    (2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

    不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

    ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

    令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

    ∵g′(x)=-2x+1=(x>0),

    ∴-2x2+x+a≤0在x>0時恒成立,

    ∴1+8a≤0,a≤-,又a<0,

    ∴a的取值范圍是

     

    查看答案和解析>>

    已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為,

    (1)若方程有兩個相等的根,求的解析式;

    (2)若的最大值為正數(shù),求的取值范圍.

    【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

    設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

    第二問中,

    解:(1)∵f(x)+2x>0的解集為(1,3),

       ①

    由方程

                  ②

    ∵方程②有兩個相等的根,

    ,

    即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

    a=-1/5代入①得:

    (2)由

     

     解得:

    故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是

     

    查看答案和解析>>

    閱讀材料:某同學求解sin18°的值其過程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡,得4sin2α+2sinα-1=0,解得sinα=
    -1±
    5
    4
    ,∵sinα=sin18°∈(0,1),∴sinα=
    -1+
    5
    4
    (sinα=
    -1-
    5
    4
    <0舍去),即sin18°=
    -1+
    5
    4
    .試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對任意x∈[-1,1]都有f(x)≥0成立,則實數(shù)a的值為
    4
    4

    查看答案和解析>>

    先閱讀下面的文字:“求
    1+
    1+
    1+…
    的值時,采用了如下的方式:令
    1+
    1+
    1+…
    =x
    ,則有x=
    1+x
    ,兩邊平方,得1+x=x2,解得x=
    1+
    5
    2
    (負值已舍去)”.可用類比的方法,求2+
    1
    2+
    1
    2+…
    的值為
    1+
    2
    1+
    2

    查看答案和解析>>

    解不等式>1的解集。

     

    查看答案和解析>>


    同步練習冊答案