亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (I)已知函數(shù)圖象上的任意兩點(diǎn).且 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=x+
    2a2x
    +alnx.
    (I)求f(x)的單調(diào)遞增區(qū)間;
    (II)設(shè)a=1,g(x)=f′(x),問是否存在實(shí)數(shù)k,使得函數(shù)g(x)(均的圖象上任意不同兩點(diǎn)連線的斜率都不小于k?若存在,求k的取值范圍;若不存在,說明理由.

    查看答案和解析>>

    已知函數(shù)f(x)=
    -x3+x2+bx+c,x<1
    alnx,x≥1
    的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
    (I)求實(shí)數(shù)b、c的值;
    (Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
    (Ⅲ)對任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸.若存在請證明,若不存在說明理由.

    查看答案和解析>>

    已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
    (1)求函數(shù)g(x)在區(qū)間(0,e]上的值域T;
    (2)是否存在實(shí)數(shù)a,對任意給定的集合T中的元素t,在區(qū)間[1,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范圍;若不存在,請說明理由;
    (3 )函數(shù)f(x)圖象上是否存在兩點(diǎn)A(x1,y1)和B(x2,y2),使得割線AB的斜率恰好等于函數(shù)f(x)在AB中點(diǎn)M(x0,y0)處切線的斜率?請寫出判斷過程.

    查看答案和解析>>

    已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
    (I)當(dāng)a>0時(shí),求函數(shù)y=f(x)的極值;
    (II)若函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)連線的斜率都小于2,求證:-
    6
    <a<
    6
    ;
    (III)對任意x0∈[0,1],y=f(x)的圖象在x=x0處的切線的斜率為k,求證:1≤a≤
    3
    是|k|≤1成立的充要條件.

    查看答案和解析>>

    已知函數(shù)f(x)=
    -x2+x,(x≤1)
    lnx,(x>1)

    (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
    (Ⅱ)設(shè)P(x1,y1),Q(x2,y2)是函數(shù)f(x)圖象上的兩點(diǎn)且x1<1,x2>1,若直線PQ是函數(shù)f(x)圖象的切線且P、Q都是切點(diǎn),求證:3<x2<4;(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986)
    (Ⅲ)設(shè)函數(shù)g(x)的定義域?yàn)镈,區(qū)間I⊆D,若函數(shù)g(x)在I上可導(dǎo),對任意的x0∈I,g(x)的圖象在(x0,g(x0))處的切線為l,函數(shù)g(x)圖象上所有的點(diǎn)都在直線l上方或直線l上,則稱區(qū)間I為函數(shù)g(x)的“下線區(qū)間”.類比上面的定義,請你寫出函數(shù)“上線區(qū)間”的定義,并根據(jù)你所給的定義,判斷區(qū)間(-∞,
    3
    8
    )是否是函數(shù)f(x)的“上線區(qū)間”(不必證明).

    查看答案和解析>>

     

    一、選擇題

    1―5 ADBAC    6―10 BCDCD    11―12 AB

    二、填空題

    13.24    14.24個(gè)    15.144     16.②

    三、解答題

    17.解:隨機(jī)猜對問題A的概率p1,隨機(jī)猜對問題B的概率p2.………1分

    回答問題的順序有兩種,分別討論如下:

       (1)先回答問題A,再回答問題B.

    參與者獲獎(jiǎng)金額ξ可取0,m,m+n.,則

    P(ξ=0)=1-p1,P(ξ=m)=p1(1-p2)=,P(ξ=m+n)=p1p2.

    Eξ=0×+m×+(m+n)×.                   ………5分

       (2)先回答問題B,再回答問題A.

    參與者獲獎(jiǎng)金額η可取0,n,m+n.,則

    P(η=0)=1-p2,P(η=n)=p2(1-p1)=,P(η=m+n)=p2p1.

    Eη=0×+n×+(m+n)×.                     ………9分

    Eξ-Eη=()-()=

    于是,當(dāng)時(shí),Eξ>Eη,先回答問題A,再回答問題B,獲獎(jiǎng)的期望值較大;

    當(dāng)時(shí),Eξ=Eη,兩種順序獲獎(jiǎng)的期望值相等;

    當(dāng)時(shí),Eξ<Eη,先回答問題B,再回答問題A,獲獎(jiǎng)的期望值較大. ………12分

    18.解:(1)

      ………3分

    ∵角A為鈍角,

        ……………………………4分

    取值最小值,

    其最小值為……………………6分

       (2)由………………8分

    ,

    …………10分

    在△中,由正弦定理得:   ……12分

    19.(Ⅰ)證法一:取的中點(diǎn)G,連結(jié)FG、AG,

    依題意可知:GF是的中位線,

    則  GF∥

    AE∥,

    所以GF∥AE,且GF=AE,即四邊形AEFG為平行四邊形,………3分

    則EF∥AG,又AG平面,EF平面,

    所以EF∥平面.                            ………6分

    證法二:取DC的中點(diǎn)G,連結(jié)FG,GE.

    ,平面,∴FG∥平面.          

    同理:∥平面,且,

    ∴平面EFG∥平面,                                    ………3分

    平面,

    ∴EF∥平面.                                         ………6分

    證法三:連結(jié)EC延長交AD于K,連結(jié),E、F分別CK、CD1的中點(diǎn),

    所以    FE∥D1K                          ………3分

    ∵FE∥D1K,平面,平面,∴EF∥平面.    ………6分

       (Ⅱ)解法一:⊥平面ABCD,過D在平面ABCD內(nèi)作DH⊥EC于H,連接D1H.

    ∵DH是D1H在平面ABCD內(nèi)的射影,∴D1H⊥EC.

    ∴∠DHD1為二面角的平面角。即∠DHD1=.         ………8分

    在△DHD1中,tan∠DHD1=,∴,=,

    ,∴,∴,∴. ………12分

    解法二:以D為原點(diǎn),AD、DC、DD1分別為x、y、z軸建立空間直角坐標(biāo)系。

    D(0,0,0),D1(0,0,1),E(1,x,0)、C(0,2,0)。

    平面DEC的法向量=(0,0,1),設(shè)為平面D1EC的法向量,

    。  ………8分  

    設(shè)二面角的大小為,∴cos=。

    ,∴<2,∴。           ………12分

    20.解(Ⅰ)設(shè),橢圓的方程為.

    ∵直線平行于向量,

    =(3,1)共線

    .

    。                                ………2分

    又∵在橢圓上,∴

    =-1,                       ………4分

    ,∴,,∴.………6分

       (Ⅱ)設(shè),因?yàn)橹本AB過,0),所以直線AB的方程為:,代入橢圓方程中得

    ,即,

    ,                      ………8分

    ,

    ,

    ,,

    又因?yàn)?sub>,∴!10分

    ,即。

    的軌跡方程.                  ………12分

    21.解:(1)①直線PQ的斜率,

    ,所以,

    即直線PQ的斜率.                              …………2分

    ,又,所以

    圖象上任一點(diǎn)切線的斜率k的取值范圍為.     …………4分

    .                                              …………6分

       (2)當(dāng),根據(jù)(1)中②的結(jié)論,得到存在,,使得

    ,,                  …………9分

    為單調(diào)遞減函數(shù),所以,即

    ,而,所以

    因?yàn)?sub>,所以x>0,  1-x>0

    所以   .                               …………12分

    22.證明:(Ⅰ)連接OD,∵OD=OA,∴∠OAD=∠ODA,

    ∵OC∥AD, ∴∠OAD=∠BOC, ∠DOC=∠ODA.

    ∴∠DOC=∠BOC,∵OD=OB,OC=OC,

    ∴△DOC≌△BOC. ∴∠ODC=∠OBC.                               …………2分

    ∵BC是⊙O的切線, ∴∠OBC=90°, ∴∠ODC=90°,

    ∴DC是⊙O的切線.                                           …………5分

       (Ⅱ)連接BD, ∵AB是⊙0的直徑, ∴∠ADB=90°,∴∠OBC=∠ADB.

    ∵∠OAD=∠BOC. ∴△ADB∽△OBC. ∴,

                                                          …………10分

    23.解:(Ⅰ)的參數(shù)方程為

    。         …………5分

       (Ⅱ)由

    可將,化簡得。

    將直線的參數(shù)方程代入圓方程得

    ,∴。  …………10分

    24.證法一:∵,∴,又∵,

                    ………5分

    。    ………10分

    證法二:設(shè)=,∵,

    當(dāng)時(shí),;

    當(dāng),<0,是單調(diào)遞減函數(shù),………5分

    ,∴,

    ==;

    ==。

    。          ………10分

     


    同步練習(xí)冊答案