題目列表(包括答案和解析)
設(shè)橢圓的焦點(diǎn)分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點(diǎn)A,且
.
(Ⅰ)試求橢圓的方程;
(Ⅱ)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形DMEN面積的最大值和最小值
設(shè)橢圓的焦點(diǎn)分別為F1(-1,0)、F2(1,0),右準(zhǔn)線l交x軸于點(diǎn)A,且.
(1)求橢圓的方程;
(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形DMEN面積的最大值和最小值.
設(shè)點(diǎn)是曲線
上的動(dòng)點(diǎn),點(diǎn)
到點(diǎn)(0,1)的距離和它到焦點(diǎn)
的距離之和的最小值為
.
(1)求曲線C的方程;
(2)若點(diǎn)的橫坐標(biāo)為1,過
作斜率為
的直線交
于點(diǎn)
,交
軸于點(diǎn)
,過點(diǎn)
且與
垂直的直線與
交于另一點(diǎn)
,問是否存在實(shí)數(shù)
,使得直線
與曲線
相切?若存在,求出
的值;若不存在,請(qǐng)說明理由.
設(shè)點(diǎn)是曲線
上的動(dòng)點(diǎn),點(diǎn)
到點(diǎn)(0,1)的距離和它到焦點(diǎn)
的距離之和的最小值為
.
(1)求曲線C的方程;
(2)若點(diǎn)的橫坐標(biāo)為1,過
作斜率為
的直線交
于點(diǎn)
,交
軸于點(diǎn)
,過點(diǎn)
且與
垂直的直線與
交于另一點(diǎn)
,問是否存在實(shí)數(shù)
,使得直線
與曲線
相切?若存在,求出
的值;若不存在,請(qǐng)說明理由.
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.0.1
14.63
15. 16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)2分
……………………4分
∴
的最小正周期為
…………………6分(2)∵
成等比數(shù)列 ∴
∴≥
………………………8分
∵ ∴
≤
即
≤
∵ ∴
≤
………………………………………………10分
18.解:(1)設(shè)公差
由
成等比數(shù)列得
…………………1分
∴即 ∴
舍去或
…………………………3分
∴
………………………………………………4分
又
………………………………………………5分
∴
………………………………………7分
(2)
………………………………………………8分
當(dāng)時(shí),
………………………………………10分
當(dāng)時(shí),
…………………………7分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)可能值為
……………………………………………………………5分
…………………………10分
∴ …………………………12分
20.解:(1)連結(jié)
為正△
…1分
面
3分
面面
即點(diǎn)的位置在線段
的四等分點(diǎn)且靠近
處 ………………………………………6分(2)過
作
于
,連
由(1)知
面
(三垂線定理)
∴為二面角
的平面角……9分
在中,
在中,
∴二面角的大小為
………………………………………12分
(說明:若用空間向量解,請(qǐng)參照給分)
21.解:(1)設(shè)
,由
取
得
則……………………2分
∴…………………………12分
又∵為定值,
則
………………5分
∵為定值,∴
為定值。
(2)∵,∴拋物線方程為:
設(shè)點(diǎn)
則
由(1)知 則
………………………………8分
又∵過點(diǎn)
∴
∴
∴
………………………………9分
代入橢圓方程得:
∴≥
………………11分
當(dāng)且僅當(dāng) 即 上式取等號(hào)
∴此時(shí)橢圓的方程為:
………………………………………12分
22.解:(1)∵ ∴
…1分
設(shè)
則
……2分
∴在
上為減函數(shù) 又
時(shí),
,∴
∴
在
上是減函數(shù)………4分(2)①∵
∴
或
時(shí)
∴
…………………………………6分
又≤
≤
對(duì)一切
恒成立
∴
≤
≤
……………8分
②顯然當(dāng)或
時(shí),不等式成立
…………………………9分
當(dāng),原不等式等價(jià)于
≥
………10分
下面證明一個(gè)更強(qiáng)的不等式:≥
…①
即≥
……②亦即
≥
…………………………11分
由(1) 知在
上是減函數(shù) 又
∴
……12分
∴不等式②成立,從而①成立 又
∴>
綜合上面∴≤
≤
且
≤
≤
時(shí),原不等式成立 ……………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com