亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設在的最小值為.依題意有. 查看更多

     

    題目列表(包括答案和解析)

    本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
    (1)選修4-2:矩陣與變換
    變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
    11
    01

    (I)求點P(2,1)在T1作用下的點Q的坐標;
    (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
    (2)選修4-4:極坐標系與參數(shù)方程
    從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
    (Ⅰ)求動點P的極坐標方程;
    (Ⅱ)設R為l上的任意一點,試求RP的最小值.
    (3)選修4-5:不等式選講
    已知f(x)=|6x+a|.
    (Ⅰ)若不等式f(x)≥4的解集為{x|x≥
    1
    2
    或x≤-
    5
    6
    }
    ,求實數(shù)a的值;
    (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

    查看答案和解析>>

    本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
    (1)選修4-2:矩陣與變換
    變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是
    (I)求點P(2,1)在T1作用下的點Q的坐標;
    (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
    (2)選修4-4:極坐標系與參數(shù)方程
    從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
    (Ⅰ)求動點P的極坐標方程;
    (Ⅱ)設R為l上的任意一點,試求RP的最小值.
    (3)選修4-5:不等式選講
    已知f(x)=|6x+a|.
    (Ⅰ)若不等式f(x)≥4的解集為,求實數(shù)a的值;
    (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

    查看答案和解析>>

    本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
    (1)選修4-2:矩陣與變換
    變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
    11
    01

    (I)求點P(2,1)在T1作用下的點Q的坐標;
    (II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
    (2)選修4-4:極坐標系與參數(shù)方程
    從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
    (Ⅰ)求動點P的極坐標方程;
    (Ⅱ)設R為l上的任意一點,試求RP的最小值.
    (3)選修4-5:不等式選講
    已知f(x)=|6x+a|.
    (Ⅰ)若不等式f(x)≥4的解集為{x|x≥
    1
    2
    或x≤-
    5
    6
    }
    ,求實數(shù)a的值;
    (Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

    查看答案和解析>>

    甲船由島出發(fā)向北偏東的方向作勻速直線航行,速度為海里∕小時,在甲船從島出發(fā)的同時,乙船從島正南海里處的島出發(fā),朝北偏東的方向作勻速直線航行,速度為海里∕小時。

    ⑴求出發(fā)小時時兩船相距多少海里?

    ⑴   兩船出發(fā)后多長時間相距最近?最近距離為多少海里?

    【解析】第一問中根據(jù)時間得到出發(fā)小時時兩船相距的海里為

    第二問設時間為t,則

    利用二次函數(shù)求得最值,

    解:⑴依題意有:兩船相距

    答:出發(fā)3小時時兩船相距海里                           

    ⑵兩船出發(fā)后t小時時相距最近,即

    即當t=4時兩船最近,最近距離為海里。

     

    查看答案和解析>>

    已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當時,,則。

    依題意得:,即    解得

    第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

    第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

    不妨設,則,顯然

    是以O為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設要求的兩點P、Q.

    (Ⅰ)當時,,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當時,,令

    變化時,的變化情況如下表:

    0

    0

    +

    0

    單調遞減

    極小值

    單調遞增

    極大值

    單調遞減

    ,!上的最大值為2.

    ②當時, .當時, ,最大值為0;

    時, 上單調遞增!最大值為。

    綜上,當時,即時,在區(qū)間上的最大值為2;

    時,即時,在區(qū)間上的最大值為

    (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

    不妨設,則,顯然

    是以O為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時,

    代入(*)式得:    即   (**)

     ,則

    上單調遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>


    同步練習冊答案