}Ŀб(𰸺ͽ)
ABCJČ(du)߅L(zhng)2
.
JAĴ
ڣėlABCeֵ
֪f(x)Dăɂ(g)(du)QSľx
(1)(sh)f(x)څ^(q)gϵֵСֵ
(2)JǡABCABC(du)߅քeabcC
֪f(x)Dăɂ(g)(du)QSľx
(1)(sh)f(x)څ^(q)gϵֵСֵ
(2)JǡABCУABC(du)߅քeabcC
BC |
AB |
BC |
AB |
AB |
BC |
OA1 |
OA1 |
2 |
1 |
2 |
A1A2 |
A2A3 |
A1A2 |
A2A3 |
OA1 |
2 |
1 |
2 |
An-1An |
lim |
n |
lim |
n |
OA1 |
A1A2 |
A2A3 |
OA1 |
A1A2 |
A2A3 |
С}M12֣
֪ABC(g)(ni)ǣ
1ֵ
2ֵ
һ. DCADB CCDAC
.11.
3ȣ3412.
13. 2 14. 9
15. 1
16⣺֪ã
(3)
ǡABCă(ni)
(6)
2Ҷ9
?yn)?sub>ǡABCă(ni)
12
17⣺I??????????????4
II????????????????7
??????????11
ȡֵ
????????????????????????12
18. :
(1) .6
(2)ԭʽ
.8
19⣺1
2
tС
???????????????????4
Ү(dng)r(sh)
{(dio)f
Ć{(dio)f^(q)g_^(q)g۷֣??7
2(dng)r(sh)
(dng)
r(sh)
?????????????????11
Č(du)QS??????????14
20.⣺(dng)
r(sh)
.
[13](sh).---------------------------------3
ஔ(dng)r(sh)
-2
26.
Ԯ(dng)r(sh)
(dng)
r(sh)
----4
ڳ(sh)M=26ʹM.
ʺ(sh)[13]ϵн纯(sh).---------------------------6
.
1
1----------------8
------------------------10
@Ȼ
φ{(dio)fp
t(dng)t+ޕr(sh)1.
@Ȼ
φ{(dio)fp
t(dng)r(sh)
0a1
aȡֵ0a1. -------------14
21.⣺(I) } f (e) = pe2ln e = qe 2 1
Þ (pq) (e + ) = 0 2
e + 0
p = q 3
(II) (I) ֪ f (x) = px2ln x
f(x) = p + = 4
h(x) = px 22x + pҪʹ f (x) 䶨x (0,+¥) (ni){(dio)(sh)ֻ h(x) (0,+¥) (ni)M㣺h(x)0 h(x)0 . 5
(dng) p = 0r(sh) h(x) = 2x x > 0 h(x) < 0 f(x) = < 0
f (x) (0,+¥) (ni){(dio)fp p = 0m}. 6
(dng) p > 0r(sh)h(x) = px 22x + pD_ϵĒタ(du)QS x = (0,+¥) h(x)min = p
ֻ p1 p1 r(sh) h(x)0f(x)0
f (x) (0,+¥) (ni){(dio)f
p1m}. 7
(dng) p < 0r(sh)h(x) = px 22x + pD_µĒタ(du)QS x = Ï (0,+¥)
ֻ h(0)0 p0r(sh) h(x)0 (0,+¥) .
p < 0m}. 8
CϿɵp1 p0 9
⣺(II) (I) ֪ f (x) = px2ln x
f(x) = p + = p (1 + ) 4
Ҫʹ f (x) 䶨x (0,+¥) (ni){(dio)(sh)ֻ f(x) (0,+¥) (ni)M㣺f(x)0 f(x)0 . 5
f(x)0 Û p (1 + )0 Û p Û p()maxx > 0
= 1 x = 1 r(sh)̖(ho) ()max = 1
p1 7
f(x)0 Û p (1 + )0 Û p Û p()minx > 0
> 0 x 0 r(sh) 0 p0 8
CϿɵp1 p0 9
(III) g(x) = [1,e] ǜp(sh)
x = e r(sh)g(x)min = 2x = 1 r(sh)g(x)max = 2e
g(x) Î [2,2e] 10
p0 r(sh) (II) ֪ f (x) [1,e] fp Þ f (x)max = f (1) = 0 < 2} 11
0 < p < 1 r(sh)x Î [1,e] Þ x0
f (x) = p (x)2ln xx2ln x
߅ f (x) (dng) p = 1 r(sh)ı_(d)ʽ [1,e] f
f (x)x2ln xe2ln e = e2 < 2} 12
p1 r(sh) (II) ֪ f (x) [1,e] Bm(x)ff (1) = 0 < 2g(x) [1,e] ǜp(sh)
} Û f (x)max > g(x)min = 2x Î [1,e]
Þ f (x)max = f (e) = p (e)2ln e > 2
Þ p > 13
Cϣp ȡֵ (,+¥) 14
ʡ(lin)W(wng)`ͲϢe(bo)ƽ_(ti) | W(wng)кϢe(bo)^(q) | p_e(bo)^(q) | vʷ̓o(w)xкϢe(bo)^(q) | ֙(qun)e(bo)^(q)
`ͲϢe(bo)Ԓ027-86699610 e(bo)]䣺58377363@163.com