亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    解法:依題意.當(dāng)區(qū)間的長度最小時.得到的最大值.即是所求值. 查看更多

     

    題目列表(包括答案和解析)

    一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當(dāng)日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.

    (1)多少小時后,蓄水池存水量最少?

    (2)當(dāng)蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時間有多長?

    【解析】第一問中(1)設(shè)小時后,蓄水池有水千噸.依題意,當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸

    第二問依題意,   解得:

    解:(1)設(shè)小時后,蓄水池有水千噸.………………………………………1分

    依題意,…………………………………………4分

    當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸. ………2分

    (2)依題意,   ………………………………………………3分

    解得:.  …………………………………………………………………3分

    所以,當(dāng)天有8小時會出現(xiàn)供水緊張的情況

     

    查看答案和解析>>

    已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當(dāng)時,,則。

    依題意得:,即    解得

    第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

    第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    (Ⅰ)當(dāng)時,,則

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當(dāng)時,,令

    當(dāng)變化時,的變化情況如下表:

    0

    0

    +

    0

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    ,。∴上的最大值為2.

    ②當(dāng)時, .當(dāng)時, ,最大值為0;

    當(dāng)時, 上單調(diào)遞增!最大值為

    綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

    當(dāng)時,即時,在區(qū)間上的最大值為。

    (Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時,

    代入(*)式得:    即   (**)

     ,則

    上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>

    已知,函數(shù)

    (1)當(dāng)時,求函數(shù)在點(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

    對a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時,  又    

    ∴  函數(shù)在點(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

    綜上所述   時,極大值為,無極小值

    時  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè)

    求導(dǎo),得

    ,    

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實數(shù)的取值范圍是(,

     

    查看答案和解析>>

    如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

    (Ⅰ)證明PC⊥AD;

    (Ⅱ)求二面角A-PC-D的正弦值;

    (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

     

    【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

    (1)證明:易得,于是,所以

    (2) ,設(shè)平面PCD的法向量,

    ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

    所以二面角A-PC-D的正弦值為.

    (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

    ,故 

    所以,,解得,即.

    解法二:(1)證明:由,可得,又由,,故.又,所以.

    (2)如圖,作于點H,連接DH.由,,可得.

    因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

    因此所以二面角的正弦值為.

    (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

    中,由,,

    可得.由余弦定理,,

    所以.

     

    查看答案和解析>>

    C

    [解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當(dāng)且僅當(dāng),即x時取等號,選C.

    查看答案和解析>>


    同步練習(xí)冊答案