亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2)設(shè)橢圓的左.右頂點(diǎn)分別是A1.A2.且.求橢圓方程,的條件下.設(shè)Q的橢圓右準(zhǔn)線l上異于A的任意一點(diǎn).直線QA1.QA2與橢圓的另一個(gè)交點(diǎn)分別為M.N.求證:直線MN與x軸交于定點(diǎn). 查看更多

     

    題目列表(包括答案和解析)

    設(shè)橢圓C的中心在原點(diǎn),長軸在x軸上,長軸的長等于2
    3
    ,離心率為
    3
    3

    (1)求橢圓C的標(biāo)準(zhǔn)方程;
    (2)設(shè)橢圓C的左、右頂點(diǎn)分別為A1,A2,點(diǎn)M是橢圓上異于A1,A2的任意一點(diǎn),設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1kMA2為定值.

    查看答案和解析>>

    設(shè)橢圓C的中心在原點(diǎn),長軸在x軸上,長軸的長等于2
    3
    ,離心率為
    3
    3

    (1)求橢圓C的標(biāo)準(zhǔn)方程;
    (2)設(shè)橢圓C的左、右頂點(diǎn)分別為A1,A2,點(diǎn)M是橢圓上異于A1,A2的任意一點(diǎn),設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1kMA2為定值.

    查看答案和解析>>

    設(shè)橢圓C的中心在原點(diǎn),長軸在x軸上,長軸的長等于,離心率為
    (1)求橢圓C的標(biāo)準(zhǔn)方程;
    (2)設(shè)橢圓C的左、右頂點(diǎn)分別為A1,A2,點(diǎn)M是橢圓上異于A1,A2的任意一點(diǎn),設(shè)直線MA1,MA2的斜率分別為,,證明為定值.

    查看答案和解析>>

    橢圓的方程為=1,A1、A2分別是橢圓的左、右頂點(diǎn),P是橢圓上任一點(diǎn),作A1Q⊥A1P,A2Q⊥A2P,設(shè)A1Q與A2Q相交于點(diǎn)Q,求Q點(diǎn)的軌跡方程.

    查看答案和解析>>

    設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
    (1)求證:=1;
    (2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
    (3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

    查看答案和解析>>

     

     

    一、選擇題

     1―6  DBDCDD   7―12  ADCDCD

    二、填空題

    13.3   14.       15.-25    16.

    三、解答題

    17.(滿分12分)

    解:       ∴       …………3分

      ∴不等式a+2     ∵a<0    ∴<1+  ……5分

    ①當(dāng)時(shí),<0,不等式無解

    ②當(dāng)時(shí),<0無解

    ③ 當(dāng)時(shí),

    xx                …………10分

    綜上所述,原不等式的解集為:

    ①當(dāng)時(shí),不等式無解

    ②當(dāng)時(shí),不等式解集為

    xx                …………12分

    18.(滿分12分)

    (1)甲乙兩隊(duì)各五名球員,一個(gè)間隔一個(gè)排序,出場序的種數(shù)是……3分

     

    (2)甲隊(duì)五名球員,取連續(xù)兩名的方法數(shù)為4。若不考慮乙隊(duì),甲隊(duì)有具只有連續(xù)兩名隊(duì)員射中的概率為                      …………………7分

    (3)甲、乙兩隊(duì)點(diǎn)球罰完,再次出現(xiàn)平局,可能的情況以下6種,即均未中球,均中1球,…均中5球,故所求概率為

           …………………12分

    19.(1)∵AA1⊥面ABCD, ∴AA1⊥BD,

    又BD⊥AD, ∴BD⊥A1D                                  …………………2分

    又A1D⊥BE,∴A1D⊥平面BDE                              …………………3分

    (2)連B1C,則B1C⊥BE,易證Rt△CBE∽Rt△CBB1,

    ,又E為CC1中點(diǎn),∴

                                               ……………………5分

    取CD中點(diǎn)M,連BM,則BM⊥平面CD1,作MN⊥DE于N,連NB,則∠BNM是二面角B―DE―C的平面角            ……………………7分

    Rt△CED中,易求得MN=中,∠BNM=

    ∴∠BNM=arctan                                       …………………10分

    (3)易證BN長就是點(diǎn)B到平面A1DE的距離                    …………………11分

    ∴∠BN=                           …………………12分

    20.(滿分12分)

    解:(Ⅰ)由 。           …………………2分

    b2=ac及正弦定理得sin2B=sin A sin C.

    于是    cot A + cot C =

    =

    =

    =

    =

    =

    =                              …………………7分

    (Ⅱ)由      ?      =,得,又由,可得,即。

    由余弦定理

                                    …………………9分

    所以                                          …………………12分

    21.(滿分13分)

    解:(Ⅰ)              …………………4分

    (Ⅱ)…………………6分

    =                                       …………………8分

                                         …………………9分

    ∴數(shù)列是等比數(shù)列,且       …………………10分

    (Ⅲ)由(Ⅱ)得:    …………………11分

    ………………12分

                            ………………13分

    22.(滿分13分)

    解:(Ⅰ)∵橢圓方程為ab>0,c>0,c2=a2-b2

    ,FP的中點(diǎn)D的坐標(biāo)為()……2分

    直線AB的方程為:∵D在直線AB上∴……3分

    化簡得    ∴…………………4分

    (Ⅱ)…………5分   

           =-3  ∴                                        …………………6分

    由(Ⅰ)得:                                                              …………………7分

    ∴橢圓方程為:                                                  …………………8分

    (Ⅲ)設(shè)直線QA1QA2斜率分別為k1、k2,則

    解得……10分由

    解得

    直線MN的方程為y=0

    化簡得

      ∴

    即直線MN與x軸交于定點(diǎn)()      ……………13分


    同步練習(xí)冊答案