題目列表(包括答案和解析)
將填空題和解答題用0.5毫米的黑色墨水簽字筆答在答題卡上每題對(duì)應(yīng)的答題區(qū)域內(nèi).答在試題卷上無效。
函數(shù)f(x)=3sin的圖象為C,如下結(jié)論中正確的是________(寫出所有正確結(jié)論的編號(hào)).①圖象C關(guān)于直線x=對(duì)稱;②圖象C關(guān)于點(diǎn)對(duì)稱;③由y=3sin2x的圖象向右平移個(gè)單位長度可以得到圖象C;④函數(shù)f(x)在區(qū)間內(nèi)是增函數(shù).
第Ⅱ卷 主觀題部分(共80分)
已知均為正數(shù),
,則
的最小值是 ( )
A. B.
C.
D.
第Ⅱ卷 (非選擇題 共90分)
二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。
第Ⅱ卷(非選擇題,共90分)
二、填空題:(本大題4小題,每小題5分,滿分20分)
13.用一個(gè)平面去截正方體,其截面是一個(gè)多邊形,則這個(gè)多邊形的邊數(shù)最多是 條 。
已知函數(shù)
(1)在給定的直角坐標(biāo)系內(nèi)畫出的圖象;
(2)寫出的單調(diào)遞增區(qū)間(不需要證明);
(3)寫出的最大值和最小值(不需要證明).
(第II卷) 50分
一、填空題(本大題共2小題,每小題4分,共8分.把答案填在答題卡上)
一、選擇題
AACCD BBDDD AC
二、填空題
13. 14.T13 15.①⑤ 16.
三、解答題
17.解:(Ⅰ)因?yàn)?sub>,
由正弦定理,得,
……3分
整理,得
因?yàn)?sub>、
、
是
的三內(nèi)角,所以
,
因此 .
……6分
(Ⅱ),即
,
……8分
由余弦定理,得,所以
, ……10分
解方程組,得
.
……12分
18.(本題滿分12分)
解法一:記與
的比賽為
,
(Ⅰ)齊王與田忌賽馬,有如下六種情況:
,
,
,
,
,
. ………………………3分
其中田忌獲勝的只有一種,所以田忌獲勝的概率為
.
…………………………………………………………………………………………6分
(Ⅱ)已知齊王第一場必出上等馬,若田忌第一場出上等馬
或中等馬
,則剩下兩場中至少輸?shù)粢粓,這時(shí)田忌必?cái)。?/p>
為了使自己獲勝的概率最大,田忌第一場應(yīng)出下等馬,后兩場有兩種情形:
①若齊王第二場派出中等馬,可能對(duì)陣情形是
、
或者、
,所以田忌獲勝的概率為
; ………………………9分
②若齊王第二場派出下等馬,可能對(duì)陣情形是
、
或者、
,所以田忌獲勝的概率為
,
所以田忌按或者
的順序出馬,才能使自己獲勝的概率達(dá)到最大值
.
………………………………………………………………………………………12分
解法二:各種對(duì)陣情況列成下列表格:
1
2
3
4
5
6
………………………3分
(Ⅰ)其中田忌獲勝的只有第五種這一種情形,所以田忌獲勝的概率為.……6分
(Ⅱ)為了使自己獲勝的概率最大,田忌第一場應(yīng)出下等馬,即只能是第五、第六兩種情形. …………………………………………………9分
其中田忌獲勝的只有第五種這一種情形,所以田忌按或者
的順序出馬,才能使自己獲勝的概率達(dá)到最大值
.………………………12分
19.(本題滿分12分)
解證: (Ⅰ) 連結(jié)
連結(jié)
,
∵四邊形是矩形
∴為
中點(diǎn)
又為
中點(diǎn),從而
∥
------------3分
∵平面
,
平面
∴∥平面
。-----------------------5分
(Ⅱ)(方法1)
三角形的面積
-------------------8分
到平面
的距離為
的高
∴---------------------------------11分
因此,三棱錐的體積為
。------------------------------------12分
(方法2)
,
,
∴為等腰
,取底邊
的中點(diǎn)
,
則,
∴的面積
-----------8分
∵,∴點(diǎn)
到平面
的距離等于
到平面
的距離,
由于,
,
∴ ,
過作
于
,則
就是
到平面
的距離,
又,----------11分
---------------------12分
(方法3)
到平面
的距離為
的高
∴四棱錐的體積
------------------------9分
三棱錐的體積
∴---------------------------------------------11分
因此,三棱錐的體積為
。-------------------------------------12分
20.(Ⅰ)依題意知,
∵,
∴.
∴所求橢圓的方程為
.
……4分
(Ⅱ)設(shè)點(diǎn)關(guān)于直線
的對(duì)稱點(diǎn)為
,
∴ ……6分
解得:,
.
……8分
∴.
……10分
∵ 點(diǎn)在橢圓
:
上,
∴, 則
.
∴的取值范圍為
.
……12分
21.解:(Ⅰ)由知,
定義域?yàn)?sub>
,
. ……………………3分
當(dāng)時(shí),
,
………………4分
當(dāng)時(shí),
.
………………5分
所以的單調(diào)增區(qū)間是
,
的單調(diào)減區(qū)間是
.
…………………… ………………6分
(Ⅱ)由(Ⅰ)知,在
上單調(diào)遞增,
在上單調(diào)遞減,在
上單調(diào)遞增,且當(dāng)
或
時(shí),
, 所以
的極大值為
,
極小值為. ………………………8分
又因?yàn)?sub>,
, ………10分
所以在的三個(gè)單調(diào)區(qū)間
上,
直線與
的圖象各有一個(gè)交點(diǎn),
當(dāng)且僅當(dāng), 因此,
的取值范圍為
. ………………12分
22.解:(Ⅰ)當(dāng)時(shí),
……………………………3分
∴=
=
=
= …………………………………7分
(Ⅱ)
+
+
=
= ……………13分
當(dāng)且僅當(dāng),即
時(shí),
最。14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com