亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    21. 查看更多

     

    題目列表(包括答案和解析)

    (本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

    (1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

    查看答案和解析>>

    (本小題滿分12分)已知等比數(shù)列{an}中, 

       (Ⅰ)求數(shù)列{an}的通項公式an;

       (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

       (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

    查看答案和解析>>

    (本小題滿分12分)已知函數(shù),其中a為常數(shù).

       (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

       (Ⅱ)求的單調(diào)區(qū)間.

    查看答案和解析>>

    (本小題滿分12分)

    甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

       (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

       (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

    查看答案和解析>>

    (本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

       (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

       (2)當(dāng)時,求弦長|AB|的取值范圍.

    查看答案和解析>>

    一、選擇題

    1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

    2,4,6

  • <li id="bsjoz"><samp id="bsjoz"></samp></li>

    2,4,6

    三、解答題

    17.(本小題滿分12分)

           解證:(I)

           由余弦定理得              …………4分

           又                                               …………6分

         (II)

                                              …………10分

                                                              

           即函數(shù)的值域是                                                          …………12分

    18.(本小題滿分12分)

           解:(I)依題意

                                                                …………2分

          

                                                                        …………4分

                                                                            …………5分

    (II)                   …………6分

                                                             …………7分

                  …………9分

                                           …………12分

    19.(本小題滿分12分)

         (I)證明:依題意知:

                                          …………2分

         …4分

       (II)由(I)知平面ABCD

           ∴平面PAB⊥平面ABCD.                        …………4分

         在PB上取一點M,作MNAB,則MN⊥平面ABCD

           設(shè)MN=h

           則

                                …………6分

           要使

           即MPB的中點.                                                                  …………8分

          <td id="rjvax"><strong id="rjvax"></strong></td>
          <table id="bsjoz"><xmp id="bsjoz"></xmp></table>
            <li id="bsjoz"></li>
              <pre id="bsjoz"><xmp id="bsjoz"><bdo id="bsjoz"></bdo></xmp></pre>
                    <strong id="bsjoz"><progress id="bsjoz"><address id="bsjoz"></address></progress></strong>
                  •        建立如圖所示的空間直角坐標(biāo)系

                           則A(0,0,0),B(0,2,0),

                           C(1,1,0),D(1,0,0),

                           P(0,0,1),M(0,1,

                           由(I)知平面,則

                           的法向量。                   …………10分

                           又為等腰

                          

                           因為

                           所以AM與平面PCD不平行.                                                  …………12分

                    20.(本小題滿分12分)

                           解:(I)已知,

                           只須后四位數(shù)字中出現(xiàn)2個0和2個1.

                                                                 …………4分

                       (II)的取值可以是1,2,3,4,5,.

                          

                                                                                  …………8分

                           的分布列是

                       

                    1

                    2

                    3

                    4

                    5

                    P

                                                                                                                          …………10分

                                     …………12分

                       (另解:記

                           .)

                    21.(本小題滿分12分)

                           解:(I)設(shè)M,

                            由

                           于是,分別過A、B兩點的切線方程為

                             ①

                             ②                           …………2分

                           解①②得    ③                                                 …………4分

                           設(shè)直線l的方程為

                           由

                             ④                                               …………6分

                           ④代入③得

                           即M

                           故M的軌跡方程是                                                      …………7分

                       (II)

                          

                                                                                                     …………9分

                       (III)

                           的面積S最小,最小值是4                      …………11分

                           此時,直線l的方程為y=1                                                      …………12分

                    22.(本小題滿分14分)

                           解:(I)                           …………2分

                           由                                                           …………4分

                          

                           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                                         …………6分

                           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                                          …………8分

                       (II)當(dāng)上單調(diào)遞增,因此

                          

                                                                                                                          …………10分

                           上單調(diào)遞減,

                           所以值域是                           …………12分

                           因為在

                                                                                                                          …………13分

                           所以,a只須滿足

                           解得

                           即當(dāng)使得成立.

                                                                                                                          …………14分