亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    在直角坐標(biāo)系中將曲線C1:xy=繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)30°后得到曲線C2.則曲線C2截y軸所得的弦長為 . 14.已知不等式|2x-4|+|3x+3|+2|x-1|+2a-3<0的解集非空.則實(shí)數(shù)a的取值范圍為 查看更多

     

    題目列表(包括答案和解析)

    本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
    (1)選修4-2:矩陣與變換
    已知矩陣M=
    7-6
    4-3
    ,向量
    ξ 
    =
    6
    5

    (I)求矩陣M的特征值λ1、λ2和特征向量
    ξ
    1
    ξ2
    ;
    (II)求M6
    ξ
    的值.
    (2)選修4-4:坐標(biāo)系與參數(shù)方程
    在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
    x=2cosα
    y=sinα
    (α為參數(shù))
    .以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
    π
    4
    )=2
    2

    (Ⅰ)求直線l的直角坐標(biāo)方程;
    (Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
    (3)選修4-5:不等式選講
    (Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
    1
    3
    (a+b+c)2
    ;    
    (Ⅱ)某長方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長之和等于3,求其對(duì)角線長的最小值.

    查看答案和解析>>

    本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
    (1)選修4一2:矩陣與變換
    求矩陣A=
    2,1
    3,0
    的特征值及對(duì)應(yīng)的特征向量.
    (2)選修4一4:坐標(biāo)系與參數(shù)方程
    已知直線l的參數(shù)方程:
    x=t
    y=1+2t
    (t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
    2
    sin(θ+
    π
    4
    )

    (Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
    (Ⅱ)判斷直線l和圓C的位置關(guān)系.
    (3)選修4一5:不等式選講
    已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

    查看答案和解析>>

    CACD CCBA

    9、      10、2:1      11、    12、      13、4

    14、a<-1   15、

     

    16、17、解:(I)依題意

                                                                …………2分

          

                                                                        …………4分

             bn=8+8×(n-1)=8n                                   …………5分

    (II)                   …………6分

                    

     

                                                        …………12分

    18、(1)3

    (2)底面邊長為2,高為4是,體積最大,最大體積為16

    19、

    略解、(1)因?yàn)閒′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

    (2)由已知a>0

    令f′(x)=3ax2+2x-1>0

    故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當(dāng)a>0時(shí),函數(shù)在f(x)在區(qū)間()上不存在零點(diǎn)

    20、(1)f(1)=3………………………………………………………………………………(1分)

            f(2)=6………………………………………………………………………………(2分)

            當(dāng)x=1時(shí),y=2n,可取格點(diǎn)2n個(gè);當(dāng)x=2時(shí),y=n,可取格點(diǎn)n個(gè)

            ∴f(n)=3n…………………………………………………………………………(4分)

      

       (2)………………………………………………(9分)

           

            ∴T1<T2=T3>T4>…>Tn

            故Tn的最大值是T2=T3=

            ∴m≥………………………………………………………………()

     

     

    21、解:(Ⅰ)設(shè),

    ,      …………………2分

                       …………………3分

    .                 ………………………………………………4分

    ∴動(dòng)點(diǎn)M的軌跡C是以O(shè)(0,0)為頂點(diǎn),以(1,0)為焦點(diǎn)的拋物線(除去原點(diǎn)).

                 …………………………………………5分

    (Ⅱ)解法一:(1)當(dāng)直線垂直于軸時(shí),根據(jù)拋物線的對(duì)稱性,有;

                                                             ……………6分

    (2)當(dāng)直線軸不垂直時(shí),依題意,可設(shè)直線的方程為,則A,B兩點(diǎn)的坐標(biāo)滿足方程組

    消去并整理,得

    ,

    .   ……………7分

    設(shè)直線AEBE的斜率分別為,則:

    .  …………………9分

    ,

    ,

    ,

    .

    綜合(1)、(2)可知.                  …………………10分

    解法二:依題意,設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組:

    消去并整理,得

    ,

    . ……………7分

    設(shè)直線AEBE的斜率分別為,則:

    .  …………………9分

    ,

    ,

    ,

    .        ……………………………………………………10分

    (Ⅲ)假設(shè)存在滿足條件的直線,其方程為,AD的中點(diǎn)為,AD為直徑的圓相交于點(diǎn)F、GFG的中點(diǎn)為H,則,點(diǎn)的坐標(biāo)為.

    ,

    ,

     .                  …………………………12分

    ,

    ,得

    此時(shí),.

    ∴當(dāng),即時(shí),(定值).

    ∴當(dāng)時(shí),滿足條件的直線存在,其方程為;當(dāng)時(shí),滿足條件的直線不存在.    

     

     

     


    同步練習(xí)冊(cè)答案