亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
    (1)若ED:DC=1:2,EF=12,試求DG的長.
    (2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.
    分析:(1)根據(jù)正方形性質(zhì)得出∠DCG=90°,CG=EF=CE=12,求出CD,根據(jù)勾股定理求出DG即可;
    (2)根據(jù)正方形性質(zhì)得出∠DCG=∠ECB=90°,CE=CG,CD=BC,根據(jù)SAS證△DCG≌△BCE,推出BE=DG,∠1=∠2,求出∠1+∠3=90°,根據(jù)三角形的內(nèi)角和定理求出∠EHD=90°,即可退出BE⊥DG,
    解答:(1)解:∵四邊形EFGC是正方形,
    ∴∠DCG=90°,CG=EF=CE=12,
    ∵ED:DC=1:2,
    ∴CD=8,
    在Rt△DCG中,由勾股定理的:DG=
    DC2+CG2
    =
    82+122
    =4
    13
    ;

    (2)BE與DG之間的關(guān)系是BE=DG,BE⊥DG,
    證明:延長GD交BE于H,
    ∵四邊形ABCD和四邊形EFGC是正方形,
    ∴∠DCG=∠ECB=90°,CE=CG,CD=BC,
    ∵在△DCG和△BCE中
    CG=CE
    ∠DCG=∠BCE
    DC=BC
    ,
    ∴△DCG≌△BCE(SAS),
    ∴BE=DG,∠1=∠2,
    ∵∠3=∠4,∠2+∠4=90°,
    ∴∠1+∠3=90°,
    ∴∠EHD=180°-90°=90°,
    ∴BE⊥DG,
    即BE與DG之間的關(guān)系是BE=DG,BE⊥DG.
    點評:本題考查了正方形性質(zhì),勾股定理,全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,垂直的定義等知識點,主要考查學生的推理能力和猜想能力,題目具有一定的代表性,是一道比較好的題目.
    練習冊系列答案
    相關(guān)習題

    科目:初中數(shù)學 來源: 題型:

    19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
    2
    cm,則△AEC面積為
     
    cm2

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
    A、1B、2C、3D、4

    查看答案和解析>>

    科目:初中數(shù)學 來源: 題型:

    17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
    16

    查看答案和解析>>

    同步練習冊答案