亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    精英家教網(wǎng)已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
    (1)這條拋物線與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=4,⊙M過(guò)A、B、C三點(diǎn),求扇形MAC的面積;
    (2)在(1)的條件下,拋物線上是否存在點(diǎn)P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
    分析:(1)根據(jù)拋物線的解析式,可表示出A、B的坐標(biāo),根據(jù)AB=4,可求出m的值,從而確定該拋物線的解析式,即可得到A、B、C的坐標(biāo);根據(jù)B、C的坐標(biāo),可得到∠OBC=45°,根據(jù)圓周角定理知∠AMC=90°,即△AMC是等腰直角三角形,AC的長(zhǎng)易求得,即可得到半徑AM、MC的長(zhǎng),利用扇形的面積公式,即可求得扇形AMC的面積.
    (2)設(shè)PD與BC的交點(diǎn)為E,此題可分成兩種情況考慮:
    ①當(dāng)△BPE的面積是△BDE的2倍時(shí),由于△BDE和△BPD同高不等底,那么它們的面積比等于底邊的比,即DE=
    1
    3
    PD,可設(shè)出P點(diǎn)的坐標(biāo),那么E點(diǎn)的縱坐標(biāo)是P點(diǎn)縱坐標(biāo)的
    1
    3
    ,BD的長(zhǎng)為B、P橫坐標(biāo)差的絕對(duì)值,由于∠OBC=45°,那么BD=DE,可以此作為等量關(guān)系求出P點(diǎn)的坐標(biāo);
    ②當(dāng)△BDE的面積是△BPE的2倍時(shí),方法同①.
    解答:精英家教網(wǎng)解:(1)∵y=mx2+(m-3)x-3=(mx-3)(x+1),
    ∴x1=-1,x2=
    3
    m
    ,
    ∴AB=
    3
    m
    -(-1)=4,
    即m=1;
    ∴y=x2-2x-3,
    得A(-1,0)、B(3,0)、C(0,-3),
    ∴∠OBC=45°,∠AMC=90°,
    ∵AC=
    12+32
    =
    10

    ∵AM=CM,
    ∴AM=
    AC
    2
    =
    5

    ∴R=
    5
    ,S=
    5
    4
    π.

    (2)設(shè)PD與BC的交點(diǎn)為E,可求直線BC解析式為y=x-3,
    設(shè)P(x,x2-2x-3);當(dāng)S△BED:S△BEP=1:2時(shí),PD=3DE,
    得-(x2-2x-3)=-3(x-3),解得x=2或3,
    x=2
    y=-3
    x=3
    y=0
    (舍去),
    ∴P(2,-3);
    當(dāng)S△PBE:S△BED=1:2時(shí),同理可得P(
    1
    2
    ,-
    15
    4
    ),
    故存在P(2,-3)或P(
    1
    2
    ,-
    15
    4
    ).
    點(diǎn)評(píng):此題是二次函數(shù)的綜合類題目,涉及到:二次函數(shù)解析式的確定、圓周角定理、扇形面積的計(jì)算方法以及圖形面積的求法等知識(shí),綜合性強(qiáng),難度稍大.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    已知二次函數(shù)y=2x2-mx-4的圖象與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)的倒數(shù)和為2,則m=
     

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過(guò)點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和精英家教網(wǎng)點(diǎn)C,頂點(diǎn)為P.
    (1)求這個(gè)拋物線的解析式;
    (2)求線段PC的長(zhǎng);
    (3)設(shè)D為線段OC上的一點(diǎn),且∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點(diǎn)為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個(gè)二次函數(shù)的解析式為
     

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    已知二次函數(shù)y=-
    1
    2
    x2+mx+
    3
    2
    的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),并且該拋物線與x軸交于B、C兩點(diǎn),與y軸的交點(diǎn)為E,P為拋物線的頂點(diǎn).如圖所示.
    (1)求這個(gè)二次函數(shù)表達(dá)式.
    (2)設(shè)點(diǎn)D為線段OC上的一點(diǎn),且滿足∠DPC=∠BAC,說(shuō)明直線PC與直線AC的位置關(guān)系,并求出點(diǎn)D的坐標(biāo).
    (3)在(1)中的拋物線上是否存在一點(diǎn)F,使S△BCF=
    3
    4
    S△BCP?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    已知二次函數(shù)y+x2+mx+m-2,說(shuō)明:無(wú)論m取何實(shí)數(shù),拋物線總與x軸有兩個(gè)交點(diǎn).

    查看答案和解析>>

    同步練習(xí)冊(cè)答案