亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    24、如圖,在Rt△ABC中,∠C=90°,
    (1)用直尺和圓規(guī)作出∠CBA的平分線BE,交直角邊AC于E;(保留作圖痕跡)
    (2)沿BE折疊這個三角形,使點C與AB邊上的一點D重合.當∠A滿足什么條件時,點D恰好為AB的中點?利用此條件證明D為AB的中點.
    分析:(1)①以點B為圓心,任意長為半徑畫弧,與AB、BC交于M、N兩點,②分別以M、N為圓心,以大于$frac{1}{2}$MN的長畫弧,兩弧交于P點,③連接BP交AC與E點;
    (2)點D為AB的中點,即DE垂直平分AB,則∠A=∠EBA,由折疊可知∠EBA=∠EBC,而∠A+∠EBA+∠EBC=90°,從而可求∠A.
    解答:解:(1)如圖所示.

    (2)①由折疊可知,∠EBA=∠EBC,
    當D為AB的中點時,DE垂直平分AB,
    根據(jù)垂直平分線的性質(zhì)可知,∠A=∠EBA,
    在Rt△ABC中,∠A+∠CBA=90°,
    即∠A+∠EBA+∠EBC=90°,即∠A=30°,
    所以,當∠A=30°時,點D恰好為AB的中點.
    點評:本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
    (1)求證:BC是⊙O的切線;
    (2)若CD=6,AC=8,求AE.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
    (1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
    (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
    (3)如果△CEF與△DEF相似,求AD的長.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,在Rt△ABC中,BD⊥AC,sinA=
    3
    5
    ,則cos∠CBD的值是( 。

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
    5
    cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
    (1)當點P在線段DE上運動時,線段DP的長為
    (t-2)
    (t-2)
    cm,(用含t的代數(shù)式表示).
    (2)當點N落在AB邊上時,求t的值.
    (3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

    查看答案和解析>>

    同步練習(xí)冊答案