亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
    2
    13
    +4
    2
    13
    +4
    分析:由題可知DO=3,AO=5,在三角形AOD中,因?yàn)椤螦DB=90度,由勾股定理求出 AD=4,則BC=AD=4三角形ABD為直角三角形,由勾股定理求出因?yàn)?為AC中點(diǎn),OE垂直AC,
    則EA=EC,所以BE+CE=AB,由此則△CBE的周長(zhǎng)可求.
    解答:解:∵四邊形ABCD是平行四邊形,CA=10,DB=6,
    ∴DO=3,AO=5,
    在三角形AOD中,因?yàn)椤螦DB=90°
    由勾股定理求出 AD=4,
    則BC=AD=4,
    三角形ABD為直角三角形
    由勾股定理得AB=2
    13

    ∵0為AC中點(diǎn),OE垂直AC,
    ∴EA=EC,
    ∴三角形CBE周長(zhǎng)=EC+CB+BE
    =EA+CB+BE=AB+BC=2
    13
    +4.
    故答案為:2
    13
    +4.
    點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)、勾股定理的運(yùn)用以及垂直平分線的性質(zhì),題目的綜合性很好,難度中等.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
    29
    ,AC=4,BD=10.
    問(wèn):(1)AC與BD有什么位置關(guān)系?說(shuō)明理由.
    (2)四邊形ABCD是菱形嗎?為什么?

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
    4
    cm.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    (2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
    探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
    拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源: 題型:

    (2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
    (1)求m的取值范圍;
    (2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
    乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
    (1)求證:△BAE∽△BCF.
    (2)若BG=BH,求證:四邊形ABCD是菱形.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案