亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    【題目】如圖,兩建筑物的水平距離,點測得點的俯角,測得點的俯角,求這兩個建筑物的高度.(結(jié)果保留整數(shù))

    【答案】兩建筑物的高度分別約為36米、15

    【解析】

    先延長CD交過點A的水平線于點E,則AE=BC,根據(jù)∠β=45°求出∠BAC的度數(shù),由BC=36m即可求出AB的高度,由∠α=30°利用銳角三角函數(shù)的定義即可求出DE,進而可求出CD的高.

    延長CD交過點A的水平線于點E,則AE=BC=36

    RtACE中,tanβ=

    CE=AE×tan45°=AE×1=AE=36()

    AB=CE=36(),

    RtADE中,tanα=,

    DE=AE×tan30°=36×=,

    CD=CE-DE=36-≈15

    即兩建筑物的高度分別約為36米、15

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,過點軸的垂線,交直線于點;點與點關(guān)于直線對稱;過點軸的垂線,交直線于點;點與點關(guān)于直線對稱;過點軸的垂線,交直線于點;,按此規(guī)律作下去,則點的坐標(biāo)為________

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】在高爾夫球訓(xùn)練中,運動員在距球洞處擊球,其飛行路線滿足拋物線,其圖象如圖所示,其中球飛行高度為,球飛行的水平距離為,球落地時距球洞的水平距離為

    1)求的值;

    2)若運動員再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進洞,則球的飛行路線應(yīng)滿足怎樣的拋物線,求拋物線的解析式;

    3)若球洞處有一橫放的高的球網(wǎng),球的飛行路線仍滿足拋物線,要使球越過球網(wǎng),又不越過球洞(剛好進洞),求的取值范圍.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖1,已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點EGFCD,垂足為點F

    1)證明:四邊形CEGF是正方形;

    2)探究與證明:

    將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α45°),如圖2所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由;

    3)拓展與運用:

    正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α45°),如圖3所示,當(dāng)BE,F三點在一條直線上時,延長CGAD于點H,若AG6,GH2,求BC的長.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,已知矩形ABCD,AB=6,AD=10,請用直尺和圓規(guī)按下列步驟作圖(不要求寫作法,但要保留作圖痕跡);

    1)在BC邊上作出點E,使得cosBAE

    2)在(1)作出的圖形中

    ①在CD上作出一點F,使得點DE關(guān)于AF對稱;

    ②四邊形AEFD的面積=____________

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,在矩形ABCD中,EAB中點,以BE為邊作正方形BEFG,邊EFCD于點H,在邊BE上取點M使BMBC,作MNBGCD于點L,交FG于點N.歐兒里得在《幾何原本》中利用該圖解釋了.現(xiàn)以點F為圓心,FE為半徑作圓弧交線段DH于點P,連結(jié)EP,記△EPH的面積為S1,圖中陰影部分的面積為S2.若點A,L,G在同一直線上,則的值為( )

    A.B.C.D.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,線段 AB 經(jīng)過⊙O 的圓心, AC , BD 分別與⊙O 相切于點 C D .若 AC =BD = 4 ,∠A=45°,則弧CD的長度為(

    A.πB.2πC.2πD.4π

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖,點C將線段AB分成兩部分,若AC2BCAB(ACBC),則稱點C為線段AB的黃金分割點.某數(shù)學(xué)興趣小組在進行拋物線課題研究時,由黃金分割點聯(lián)想到黃金拋物線,類似地給出黃金拋物線的定義:若拋物線yax2+bx+c,滿足b2ac(b≠0),則稱此拋物線為黃金拋物線.

    ()若某黃金拋物線的對稱軸是直線x2,且與y軸交于點(0,8),求y的最小值;

    ()若黃金拋物線yax2+bx+c(a0)的頂點P(1,3),把它向下平移后與x軸交于A(+3,0),B(x00),判斷原點是否是線段AB的黃金分割點,并說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    【題目】如圖1,在正方形中,分別是上的點,且,則有結(jié)論成立;

    如圖2,在四邊形中,分別是上的點,且的一半, 那么結(jié)論是否仍然成立?若成立,請證明;不成立,請說明理由.

    若將中的條件改為:如圖3,在四邊形中,,延長到點,延長到點,使得仍然是的一半,則結(jié)論是否仍然成立?若成立,請證明;不成立,請寫出它們的數(shù)量關(guān)系并證明

    查看答案和解析>>

    同步練習(xí)冊答案